Issue |
ESAIM: M2AN
Volume 46, Number 1, January-February 2012
|
|
---|---|---|
Page(s) | 59 - 79 | |
DOI | https://doi.org/10.1051/m2an/2011019 | |
Published online | 22 July 2011 |
First variation of the general curvature-dependent surface energy
1
Theiss Research, San Diego, CA, USA, and
Applied and Computational Mathematics Division,
National Institute of Standards and Technology,
Gaithersburg, 20899 MD, USA. gunay.dogan@nist.gov.
2
Department of Mathematics and Institute for Physical Science and Technology,
University of Maryland, College Park, 20742 MD, USA. rhn@math.umd.edu.
Received:
10
August
2010
Revised:
26
April
2011
We consider general surface energies, which are weighted integrals over a closed surface with a weight function depending on the position, the unit normal and the mean curvature of the surface. Energies of this form have applications in many areas, such as materials science, biology and image processing. Often one is interested in finding a surface that minimizes such an energy, which entails finding its first variation with respect to perturbations of the surface. We present a concise derivation of the first variation of the general surface energy using tools from shape differential calculus. We first derive a scalar strong form and next a vector weak form of the first variation. The latter reveals the variational structure of the first variation, avoids dealing explicitly with the tangential gradient of the unit normal, and thus can be easily discretized using parametric finite elements. Our results are valid for surfaces in any number of dimensions and unify all previous results derived for specific examples of such surface energies.
Mathematics Subject Classification: 49K99 / 49Q05 / 49Q10 / 49Q12 / 49S05 / 53A05
Key words: Surface energy / gradient flow / mean curvature / Willmore functional
© EDP Sciences, SMAI, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.