Issue |
ESAIM: M2AN
Volume 49, Number 4, July-August 2015
|
|
---|---|---|
Page(s) | 1047 - 1062 | |
DOI | https://doi.org/10.1051/m2an/2015002 | |
Published online | 30 June 2015 |
Uncertainty quantification in the numerical solution of coupled systems by involutive completion
University Montpellier II, France
bijan.mohammadi@um2.fr
Received:
25
March
2014
Revised:
9
January
2015
We address the issue of epistemic uncertainty quantification in the context of constrained differential systems. To illustrate our approach we have chosen a certain chromatographic adsorption model which is a coupled system of partial differential, ordinary differential and algebraic equations. The difficulty in solving this type of a system is that typically certain unknowns lack a natural time evolution equation. The standard approach in such cases is to devise specific numerical schemes which somehow try to take into account the implicit structure of the system. In our approach, we complete the system by finding the appropriate missing evolution equations. This makes the system overdetermined and more complicated in some way but, on the other hand, the completed system provides extra information useful for error estimation and uncertainty quantification. We will also show that reducing the epistemic uncertainties also leads to better estimations of aleatory uncertainties.
Mathematics Subject Classification: 58J05 / 35J40 / 35S15
Key words: Overdetermined PDE / uncertainty quantification / sensitivity analysis / chromatographic adsorption / constrained coupled systems
© EDP Sciences, SMAI 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.