Issue |
ESAIM: M2AN
Volume 49, Number 5, September-October 2015
|
|
---|---|---|
Page(s) | 1511 - 1523 | |
DOI | https://doi.org/10.1051/m2an/2015016 | |
Published online | 15 September 2015 |
Discretization of the 3d monge−ampere operator, between wide stencils and power diagrams
CNRS, University Paris Dauphine, UMR 7534, Laboratory
CEREMADE, Paris,
France
jm.mirebeau@gmail.com
Received:
4
November
2014
Revised:
1
March
2015
We introduce a monotone (degenerate elliptic) discretization of the Monge−Ampere operator, on domains discretized on cartesian grids. The scheme is consistent provided the solution hessian condition number is uniformly bounded. Our approach enjoys the simplicity of the Wide Stencil method [B.D. Froese and A.M. Oberman, J. Comput. Phys. 230 (2011) 818–834.], but significantly improves its accuracy using ideas from discretizations of optimal transport based on power diagrams [F. Aurenhammer, F. Hoffmann and B. Aronov, Algorithmica (1998)]. We establish the global convergence of a damped Newton solver for the discrete system of equations. Numerical experiments, in three dimensions, illustrate the scheme efficiency.
Mathematics Subject Classification: 65N06 / 65N12 / 35B50 / 35J60 / 49L25
Key words: Viscosity solutions / monotone numerical scheme / finite difference methods / Monge−Ampere operator
© EDP Sciences, SMAI, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.