Issue |
ESAIM: M2AN
Volume 49, Number 6, November-December 2015
Special Issue - Optimal Transport
|
|
---|---|---|
Page(s) | 1553 - 1576 | |
DOI | https://doi.org/10.1051/m2an/2015021 | |
Published online | 05 November 2015 |
A hybrid variational principle for the Keller–Segel system in ℝ2
1 TSE (GREMAQ, Université Toulouse 1
Capitole), 21 Allée de
Brienne, 31015
Toulouse cedex 6,
France.
adrien.blanchet@ut-capitole.fr
2 Department of Mathematics, Imperial
College London, London
SW7 2AZ,
UK.
carrillo@imperial.ac.uk
3 Department of Mathematical Sciences,
Carnegie Mellon University, Pittsburgh, PA
15213,
USA.
davidk@andrew.cmu.edu
4 Departamento de Ingeniería Matemática
and Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de
Chile, Casilla 170 Correo
3, Santiago,
Chile.
kowalczy@dim.uchile.cl
5 Institut de Mathématiques de
Toulouse, UMR 5219, Université de Toulouse, CNRS, 31062
Toulouse cedex 9,
France.
Philippe.Laurencot@math.univ-toulouse.fr
6 Università degli Studi di Pavia,
Dipartimento di Matematica “F. Casorati”, via Ferrata 1, 27100
Pavia,
Italy.
stefano.lisini@unipv.it
Received:
25
March
2015
We construct weak global in time solutions to the classical Keller–Segel system describing cell movement by chemotaxis in two dimensions when the total mass is below the established critical value. Our construction takes advantage of the fact that the Keller–Segel system can be realized as a gradient flow in a suitable functional product space. This allows us to employ a hybrid variational principle which is a generalisation of the minimizing implicit scheme for Wasserstein distances introduced by [R. Jordan, D. Kinderlehrer and F. Otto, SIAM J. Math. Anal. 29 (1998) 1–17].
Mathematics Subject Classification: 35K65 / 35K40 / 47J30 / 35Q92 / 35B33
Key words: Chemotaxis / Keller–Segel model / minimizing scheme / Kantorovich–Rubinstein–Wasserstein distance
© EDP Sciences, SMAI 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.