Issue |
ESAIM: M2AN
Volume 50, Number 6, November-December 2016
|
|
---|---|---|
Page(s) | 1887 - 1916 | |
DOI | https://doi.org/10.1051/m2an/2016010 | |
Published online | 21 October 2016 |
Nondiffusive conservative schemes based on approximate Riemann solvers for Lagrangian gas dynamics
1 Sorbonne Universités, UPMC University Paris 06, CNRS, UMR
7598, Laboratoire Jacques-Louis Lions, 4 place 75005 Jussieu, Paris, France.
nina.aguillon@upmc.fr
2 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS,
Université Paris-Saclay, 78035 Versailles, France.
christophe.chalons@uvsq.fr
Received:
10
November
2014
Revised:
23
October
2015
Accepted:
25
January
2016
In this paper, we present a conservative finite volume scheme for the gas dynamics in Lagrangian coordinates, which is fast and nondiffusive. By fast, we mean that it relies on an approximate Riemann solver, and hence the costly resolution of Riemann problems is avoided. By nondiffusive, we mean that the solution provided by the scheme is exact when the initial data is an isolated admissible shock, and discontinuities are sharply captured in general. The construction of the scheme uses two main tools: the approximate Riemann solver of [Ch. Chalons and F. Coquel, Math. Models Methods Appl. Sci. 24 (2014) 937–971.], which turns out to be exact on isolated admissible shocks, and a discontinuous reconstruction strategy, which consists in rebuilding entropy satisfying shocks inside some well chosen cells. Numerical experiments in 1D and 2D are proposed.
Mathematics Subject Classification: 35L65 / 35L40 / 65M08 / 76N15 / 76M12
Key words: Conservative finite volume scheme / discontinuous reconstruction / approximate Riemann solver / non diffusive scheme / Sharp discontinuities
© EDP Sciences, SMAI 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.