Issue |
ESAIM: M2AN
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
|
|
---|---|---|
Page(s) | S447 - S474 | |
DOI | https://doi.org/10.1051/m2an/2020041 | |
Published online | 26 February 2021 |
Guaranteed and robust L2-norm a posteriori error estimates for 1D linear advection problems
1
Université Paris-Est, CERMICS (ENPC), 77455 Marne-la-Vallée 2, France.
2
Inria, 2 rue Simone Iff, 75589 Paris, France.
* Corresponding author: seyed-mohammad.zakerzadeh@inria.fr
Received:
21
April
2019
Accepted:
10
June
2020
We propose a reconstruction-based a posteriori error estimate for linear advection problems in one space dimension. In our framework, a stable variational ultra-weak formulation is adopted, and the equivalence of the L2-norm of the error with the dual graph norm of the residual is established. This dual norm is showed to be localizable over vertex-based patch subdomains of the computational domain under the condition of the orthogonality of the residual to the piecewise affine hat functions. We show that this condition is valid for some well-known numerical methods including continuous/discontinuous Petrov–Galerkin and discontinuous Galerkin methods. Consequently, a well-posed local problem on each patch is identified, which leads to a global conforming reconstruction of the discrete solution. We prove that this reconstruction provides a guaranteed upper bound on the L2 error. Moreover, up to a generic constant, it also gives local lower bounds on the L2 error, where the constant only depends on the mesh shape-regularity. This, in particular, leads to robustness of our estimates with respect to the polynomial degree. All the above properties are verified in a series of numerical experiments, additionally leading to asymptotic exactness. Motivated by these results, we finally propose a heuristic extension of our methodology to any space dimension, achieved by solving local least-squares problems on vertex-based patches. Though not anymore guaranteed, the resulting error indicator is still numerically robust with respect to both advection velocity and polynomial degree in our collection of two-dimensional test cases including discontinuous solutions aligned and not aligned with the computational mesh.
Mathematics Subject Classification: 65N15 / 65N30 / 35F05
Key words: linear advection problem / discontinuous Galerkin method / Petrov–Galerkin method / a posteriori error estimate / local efficiency / advection robustness / polynomial-degree robustness
© EDP Sciences, SMAI 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.