Free Access
Issue
R.I.R.O.
Volume 3, Number 16, 1969
Page(s) 17 - 34
DOI https://doi.org/10.1051/m2an/196903R100171
Published online 01 February 2017
  1. . P. WOLFE, « On the Convergence of Gradient Methods under Constraints », IBM Research Report RZ-204, March 1, 1966, IBM Research Laboratory, Zurich, Switzerland.
  2. , W. I. ZANGWILL, « Convergence Conditions for Nonlinear Programming Algorithms », Working Paper No 197, Center for Research in Management Science, University of California, Berkeley, California, November 1966. [Zbl: 0191.49101]
  3. . D. M. TOPKIS, A. VEINTOTT Jr., On the convergence of some feasible direction algorithms for nonlinear programming, J. SIAM Control, vol.5, n° 2, May 1967 p. 268. [MR: 213161] [Zbl: 0158.18805]
  4. . E. POLAK and M. DEPARIS, « An algorithm for minimum energy control », University of California, Electronics Research Laboratory, Berkeley, California, ERL Memorandum M225, November l, 1967.
  5. . G. ZOUTENDIJK, « Methods of feasible directions: Astudy in linear and nonlinear programming », Elsevier, Amsterdam, 1960. [Zbl: 0097.35408]
  6. . J. B. ROSEN, « The gradient projection method for nonlinear programming. Part I. Linear constraints », J. SIAM, vol. 8, n° 1, March 1960, pp. 181-217. [MR: 112750] [Zbl: 0099.36405]
  7. . E. POLAK, « On primal and dual methods for solving discrete optimal control problems », Proc. of the 2nd International Conference on Computing Methods in Optimization Problems, San Remo, Italy, September 9-13, 1968. [MR: 280243] [Zbl: 0208.17403]
  8. , E. POLAK, G. RIBIERE, « Note sur la convergence de méthodes de directions conjuguées ». [Zbl: 0174.48001]
  9. . P. KALFON, G. RIBIERE, J. C. SOGNO, « A method of feasible directions using projection operators », Proc. IFIP Congress 68, Edinburgh, August 1968. [MR: 260163] [Zbl: 0196.18003]
  10. . M. CANNON,C. CULLUM and E. POLAK, « Constrained minimization problems in finite dimensional spaces », J. SIAM Control,vol. 4, pp. 528-547, 1966. [MR: 207423] [Zbl: 0145.34202]
  11. . H. W. KUHN and A. W. TUCKER, « Nonlinear programming», Proc. of the Second Berkeley Symposium on Mathematic Statistic and Probability, University of California Press, Berkeley, California, 1951, pp. 481-492. [MR: 47303] [Zbl: 0044.05903]
  12. . J. FREHEL, « Une méthode de programmation non linéaire», IBM France, Research Laboratory, Paris, étude n° FF2-0061-0, July 1968.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you