Free Access
Issue
R.I.R.O.
Volume 3, Number 16, 1969
Page(s) 17 - 34
DOI https://doi.org/10.1051/m2an/196903R100171
Published online 01 February 2017
  1. . P. WOLFE, « On the Convergence of Gradient Methods under Constraints », IBM Research Report RZ-204, March 1, 1966, IBM Research Laboratory, Zurich, Switzerland. [Google Scholar]
  2. , W. I. ZANGWILL, « Convergence Conditions for Nonlinear Programming Algorithms », Working Paper No 197, Center for Research in Management Science, University of California, Berkeley, California, November 1966. [Zbl: 0191.49101] [Google Scholar]
  3. . D. M. TOPKIS, A. VEINTOTT Jr., On the convergence of some feasible direction algorithms for nonlinear programming, J. SIAM Control, vol.5, n° 2, May 1967 p. 268. [MR: 213161] [Zbl: 0158.18805] [Google Scholar]
  4. . E. POLAK and M. DEPARIS, « An algorithm for minimum energy control », University of California, Electronics Research Laboratory, Berkeley, California, ERL Memorandum M225, November l, 1967. [Google Scholar]
  5. . G. ZOUTENDIJK, « Methods of feasible directions: Astudy in linear and nonlinear programming », Elsevier, Amsterdam, 1960. [Zbl: 0097.35408] [Google Scholar]
  6. . J. B. ROSEN, « The gradient projection method for nonlinear programming. Part I. Linear constraints », J. SIAM, vol. 8, n° 1, March 1960, pp. 181-217. [MR: 112750] [Zbl: 0099.36405] [Google Scholar]
  7. . E. POLAK, « On primal and dual methods for solving discrete optimal control problems », Proc. of the 2nd International Conference on Computing Methods in Optimization Problems, San Remo, Italy, September 9-13, 1968. [MR: 280243] [Zbl: 0208.17403] [Google Scholar]
  8. , E. POLAK, G. RIBIERE, « Note sur la convergence de méthodes de directions conjuguées ». [Zbl: 0174.48001] [Google Scholar]
  9. . P. KALFON, G. RIBIERE, J. C. SOGNO, « A method of feasible directions using projection operators », Proc. IFIP Congress 68, Edinburgh, August 1968. [MR: 260163] [Zbl: 0196.18003] [Google Scholar]
  10. . M. CANNON,C. CULLUM and E. POLAK, « Constrained minimization problems in finite dimensional spaces », J. SIAM Control,vol. 4, pp. 528-547, 1966. [MR: 207423] [Zbl: 0145.34202] [Google Scholar]
  11. . H. W. KUHN and A. W. TUCKER, « Nonlinear programming», Proc. of the Second Berkeley Symposium on Mathematic Statistic and Probability, University of California Press, Berkeley, California, 1951, pp. 481-492. [MR: 47303] [Zbl: 0044.05903] [Google Scholar]
  12. . J. FREHEL, « Une méthode de programmation non linéaire», IBM France, Research Laboratory, Paris, étude n° FF2-0061-0, July 1968. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you