Free Access
Issue
R.I.R.O.
Volume 4, Number R2, 1970
Page(s) 33 - 50
DOI https://doi.org/10.1051/m2an/197004R200331
Published online 01 February 2017
  1. J. HARTMANIS, R. E. STEARNS. « On the Computational Complexity of Algorithms » Trans. Amer. Math. Soc., 117, pp. 285-306 (1965). [MR: 170805] [Zbl: 0131.15404] [Google Scholar]
  2. P. M. LEWIS II,R. E. STEARNS et HARTMANIS J. « Memory bounds for the recognition of context-free and context-sensitive languages », 1965,IEEE Conference Reord on Switching Circuit Theory and Logical Design, pp. 191-202, IEEE, New York (1965). [Zbl: 0272.68054] [Google Scholar]
  3. J. HARTMANIS, « Tape-Reversal Bounded Turing Machine Computations », Journal of Computer and System Sciences 2, Nr 2, pp. 117-135 (1968). [MR: 243947] [Zbl: 0259.68020] [Google Scholar]
  4. R. W. RITCHIE, « Classes of Predictably Computable Functions », Trans. Amer. Math. Soc, 106, pp. 139-173 (1963). [MR: 158822] [Zbl: 0107.01001] [Google Scholar]
  5. M. O. RABIN, « Degrees of Difficulty of Computing a Function and a Partial Ordering of Recursive Sets », Technical Reporter Nr 2, Hebrew University, Jérusalem, (1960). [Google Scholar]
  6. Manuel BLUM, « A Machine-Independent Theory of the Complexity of Recursive Functions », Journal A.C.M., avril 1967, vol. 14, Nr 2, pp. 322-336. [Zbl: 0155.01503] [MR: 235912] [Google Scholar]
  7. Manuel BLUM, « Recursive Function Theory and Speed of Computation », Canadian Math. Bull. 9 (1966), pp. 745-750. [Zbl: 0158.24904] [Google Scholar]
  8. Dieter RÖDDING, « Klassen rekursiver Funktionen », Lecture Notes in Math. 70, 1968, Springer-Verlag, Berlin, pp. 159-222. [MR: 237335] [Zbl: 0212.32802] [Google Scholar]
  9. S. C. KLEENE, « Extension of an Effectively Generated Class of Functions by Enumeration », Colloquium Math. VI (1958), pp. 67-78. [EuDML: 210387] [MR: 118672] [Zbl: 0085.24602] [Google Scholar]
  10. Hartley ROGERS, Theory of Recursive Functions and Effective Computability, Mac Graw-Hill Book Company, New York, 1967. [MR: 224462] [Zbl: 0183.01401] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you