Free Access
Issue
R.I.R.O.
Volume 5, Number R2, 1971
Page(s) 3 - 42
DOI https://doi.org/10.1051/m2an/197105R200031
Published online 01 February 2017
  1. 1. M. ATTÉIA, Fonctions spline avec contraintes linéaires type inégalité. Congrèsde l'Afiro, Nancy, mai 1967, 1-42 à 1-54. [Google Scholar]
  2. 2. M. ATTEIA, Fonctions spline définies sur un ensemble convexe, Num. Math., 12 (1968), 192-210. [EuDML: 131864] [MR: 257615] [Zbl: 0186.45202] [Google Scholar]
  3. 3. R. W. COTTLE, Symmetriec dual quadratic programs, Quart. Appl. Math., 21 (1963), 237-243. [MR: 156707] [Zbl: 0127.36802] [Google Scholar]
  4. 4. G. DANTZIG,E. EISENBERG and R. W. COTTLE, Symmetric dual non-linear programs, Pac. J. Math., 15 (1965), 809-812. [MR: 202471] [Zbl: 0136.14001] [Google Scholar]
  5. 5. J. E. FALK, Lagrange multipliers and non-linear programming, J. Math. Anal.Appl., 19 (1967), 141-159. [MR: 211753] [Zbl: 0154.44803] [Google Scholar]
  6. 6. W. FENCHEL, On conjugate convex fonctions, Canad. J. Math., 1 (1949), 73-77. [MR: 28365] [Zbl: 0038.20902] [Google Scholar]
  7. 7. W. FENCHEL, Convex cones, sets and fonctions. Mimeographed lecture notes, Princeton University (1951). [Zbl: 0053.12203] [Google Scholar]
  8. 8. D. GALE, A geometric duality theorem with economic application, Rev. Econ. Studies, 34 (1967), 19-24. [Google Scholar]
  9. 9. D. GALE,H. W. KUHN and A. W. TUCKER, Linear programming and the theory of games. In « Activity Analysis of Production and Allocation », T. C. Koopmans éd., Wiley, N.Y. (1951). [MR: 46018] [Zbl: 0045.09709] [Google Scholar]
  10. 10. P. HUARD, Dual programs, IBM J. Res. Develop., 6 (1962), 137-139. [Zbl: 0116.12403] [Google Scholar]
  11. 11. P. HUARD, Dual programs. In « Recent Advances in Math. Programming », R. L. Graves and P. Wolfe, éd., McGraw-Hill, N.Y. (1963). [MR: 156708] [Zbl: 0225.90038] [Google Scholar]
  12. 12. W. L. JONES, On conjugate f unctionals. Dissertation, Columbia University (1960). [Google Scholar]
  13. 13. J. L. JOLY, Thèse, Université de Grenoble (1970). [Google Scholar]
  14. 14. H. W. KUHN and A. W. TUCKER, Non linear programming. In « Proc. of the Second Berkeley Symp. on Math. Stat. and Prob. », Univ. of Calif. Press, Berkeley (1951). [Zbl: 0044.05903] [Google Scholar]
  15. 15. P. J. LAURENT, Charakterisierung and Konstruktion einer besten Approximation in einer konvexen Teilmenge eines normierten Raumes. Tagung, Oberwolfach, Nov. 1967, in I.S.N.M. 12 (1969), 91-102, Birkhauser Verlag. [MR: 256042] [Zbl: 0189.35102] [Google Scholar]
  16. 16. P. J. LAURENT, Construction of spline fonctions in a convex set. In « Approximations with special emphasis on spline functions. » I. J. Schoenberg, éd., Acad. Press (1969). [MR: 252932] [Zbl: 0271.41012] [Google Scholar]
  17. 17. O. L. MANGASARIAN, Duality in non-linear programming, Quart. Appl. Math., 20 (1962), 300-302. [Zbl: 0113.35703] [Google Scholar]
  18. 18. O. L. MANGASARIAN, Minimax and duality in non-linear programming, J. Math. Anal. Appl., 11 (1965), 504-518. [Zbl: 0131.18601] [Google Scholar]
  19. 19. J. J. MOREAU, Fonctionnelles convexes. Séminaire sur les équations aux dérivées partielles, Collège de France, Paris (1966). [Google Scholar]
  20. 20. K. RITTER, Generalized spline interpolation and non-linear programming. In « Approximations with special emphasis on spline functions », I. J. Schoenberg éd., Acad. Press (1969). [MR: 374763] [Zbl: 0271.41007] [Google Scholar]
  21. 21. R. T. ROCKAFELLAR, Convex functions and dual extremum problems. Thesis, Harvard (1963). [Google Scholar]
  22. 22. R. T. ROCKAFELLAR, Duality theorems for convex fonctions, Bull. Amer. Math, Soc, 70 (1964), 189-192. [MR: 165429] [Zbl: 0121.14803] [Google Scholar]
  23. 23. R. T. ROCKAFELLAR, Duality and stability in extremwn problems involving convex functions, Pac. J. Math., 21 (1967), 167-187. [MR: 211759] [Zbl: 0154.44902] [Google Scholar]
  24. 24. R. T. ROCKAFELLAR, Convex Analysis, Princ. Univ. Press (1970). [MR: 274683] [Zbl: 0193.18401] [Google Scholar]
  25. 25. R. T. ROCKAFELLAR, Conjugate convex functions in optimal control and the calculus of variations (to appear). [MR: 266020] [Zbl: 0218.49004] [Google Scholar]
  26. 26. R. T. ROCKAFELLAR, Generalized Hamiltonian equations for convex problems of Lagrange (to appear). [MR: 276853] [Zbl: 0199.43002] [Google Scholar]
  27. 27. R. T. ROCKAFELLAR, Some convex programswhose duals are linearly constrained. In « Nonlinear programming symposium », Madison, May 4-6, 1970. [Zbl: 0252.90046] [Google Scholar]
  28. 28. R. T. ROCKAFELLAR, Convex functions and duality in optimization problems and dynamics. Lecture Notes in Operations Research and Mathematical Economics, 11, Springer Verlag (1969). [MR: 334940] [Zbl: 0186.23901] [Google Scholar]
  29. 29. M. SLATER, Lagrange multipliers revisited : a contribution to non-linear programming. Cowles Commission Discussion Paper, Math. 403 (1950). [Google Scholar]
  30. 30. J. STOER, Duality in non-linear programming and the minimax theorem, Num. Math., 5 (1963), 371-379. [EuDML: 131578] [MR: 172719] [Zbl: 0152.38104] [Google Scholar]
  31. 31. J. STOER, Uber einen Dualitatssatz der nichtlinearen Programmierung, Num. Math., 6 (1964), 55-58. [EuDML: 131592] [MR: 172720] [Zbl: 0173.47403] [Google Scholar]
  32. 32. R. J. B. WETS and R. M. Van SLYKE, A duality theory for abstract mathematical programs with applications to optimal control theory, J. Math. Anal. Appl., 22 (1968), 679-706. [MR: 229473] [Zbl: 0157.16004] [Google Scholar]
  33. 33. P. WOLFE, A duality theorem for non-linear programming, Quart. Appl. Math., 19 (1961), 239-244. [MR: 135625] [Zbl: 0109.38406] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you