Free Access
Issue
R.A.I.R.O.
Volume 6, Number R1, 1972
Page(s) 15 - 26
DOI https://doi.org/10.1051/m2an/197206R100151
Published online 01 February 2017
  1. K. J. ARROW and A. C. ENTHOVEN, « Quasi-coneave programming », Econo-metrica, 29 (1961), 779-800. [MR: 138509] [Zbl: 0104.14302] [Google Scholar]
  2. J. L. BAUNTFY, Nonlinear programming for models with joint constraints, in Abadie J. (ed) Integer and nonlinear programming, North-Holland (1970), 337-352. [Zbl: 0334.90054] [Google Scholar]
  3. B. BEREANU, « Programme de risque minimal en programmation linéaire sto-chastique », C.R. Acad. Sci. Paris, 258 (1964), 5, 981-983. [MR: 167333] [Zbl: 0123.37301] [Google Scholar]
  4. B. BEREANU, « On the composition of convex functions », Rev. Roum. Math.Pures AppL, 14 (1969), 1078-1084, [MR: 252586] [Zbl: 0191.06204] [Google Scholar]
  5. C. R. BECTOR, « Indefinite quadratic programming with Standard errors in objective », Cahiers Centre d'Étude Recherche Opér. 10 (1968), 4, 247-253. [MR: 247876] [Zbl: 0169.22202] [Google Scholar]
  6. C. BERGTHALLER, « A quadratic equivalent of the minimum risk problem », Rev. Roum. Math. Pures et Appl., 15 (1970), 17-23. [MR: 263424] [Zbl: 0196.22901] [Google Scholar]
  7. A. CHARNES and W. W. COOPER, « Deterministic équivalents for optimizing and satisticing under chance constraints », Oper. Res. 11 (1963), 18-39. [MR: 153482] [Zbl: 0117.15403] [Google Scholar]
  8. M. DRAGOMIRESCU, An algorithm for minimum risk solution of stochastic programming (to be published). [Zbl: 0238.90053] [Google Scholar]
  9. W. FENCHEL, Convex cones, sets and functions, Princeton Univ., Princeton, 1953 (mimeographed). [Zbl: 0053.12203] [Google Scholar]
  10. A. M. GEOFFRION, « Stochastic programming with aspiration or fracile criteria » Management Sci., 13 (1967), 672-679. [MR: 242487] [Zbl: 0171.17602] [Google Scholar]
  11. M. HANSON, « Bounds for functionnaly convex optimal control problems », J. Matg. Anal. Appl., 8 (1964), 84-89. [MR: 158797] [Zbl: 0117.35601] [Google Scholar]
  12. J.M. HENDERSON and R. QUANDT, Microeconomic theory, Mc Graw-Hill, New York, London, 1958 [Zbl: 0224.90014] [Google Scholar]
  13. H. W. KUHN and A. W. TUCKER, Nonlinear programming, Proceed. Second Berkeley Symp. Math. Stat. Prob., Univ. Of California Press, Berkeley, 1951, 481-492. [MR: 47303] [Zbl: 0044.05903] [Google Scholar]
  14. S. KARAMARDIAN, « Strictly quasi-convex (concave) functions and duality in mathematical programming », J. Math. Anal. Appl., 20 (1967), 344-358. [MR: 219315] [Zbl: 0157.49603] [Google Scholar]
  15. S. KATAOKA, « Stochastic programming. Maximum probality model », Hitotsubashi J. Arts Sciences, 8 (1967), 51-59. [MR: 233587] [Zbl: 0125.09601] [Google Scholar]
  16. O. MANGASARIAN, « Pseudo-convex functions », J. Siam Control, 8 (1965), 281-290. [MR: 191659] [Zbl: 0138.15702] [Google Scholar]
  17. O. MANGASARIAN, « Convexity, pseudo-convexity and quasi-convexity of composite functions », Cahiers Centre d'Études Recherche Opér., 12 (1970). 114-122. [MR: 285276] [Zbl: 0218.90042] [Google Scholar]
  18. B. MARTOS. « Quasi-convexity and quasi-monotonicity in non-linear programming », Studia Sci. Math. Hungarica, 2 (1967), 265-273. [MR: 224375] [Zbl: 0178.22901] [Google Scholar]
  19. A. PREKOPA, Programming under probabilistic constraints and programming under constraints involving conditional expectations, 7th Mathematical Programming Symposium 1970, Abstracts, 107-109, North-Holland Amsterdam 1970. [Google Scholar]
  20. P. A. SAMUELSON, Foundations of economic analysis, Harvard Univ. Press, Cambridge, 1963. [MR: 29145] [Zbl: 0031.17401] [Google Scholar]
  21. J. STOER and C. WITZGALL, Convexity and optimization in finite dimensions I, Springer, New York, Berlin, 1970. [MR: 286498] [Zbl: 0203.52203] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you