Free Access
Volume 7, Number R3, 1973
Page(s) 105 - 129
Published online 01 February 2017
  1. J. BARROS NETO, Inhomogeneous boundary value problems in a halfsplace. AnSc. Norm. Sup. Pisa, 19 (1965), 331-365. [EuDML: 83352] [MR: 185265] [Zbl: 0145.14703] [Google Scholar]
  2. J. BOUTET DE MONVEL, Cours au CIME, Stresa, sept. 1968, Cremonese, Roma (1969). [Google Scholar]
  3. P.L. BUTZER et H. BERENS, Semi-group of operatoirs and approximations. Spring Verlag, Berlin (1967). [Zbl: 0164.43702] [Google Scholar]
  4. P. G. QARLET et P. A. RAVIART, General Lagrange and Hermite interpolationin Rn with applications to finite element methods. s. Arch. Rat. Mech. Anal., 46 (1972) 177-199. [MR: 336957] [Zbl: 0243.41004] [Google Scholar]
  5. J. DENY et J. L. LIONS, Les espaces du type Beppo-Levi, Ann. Inst. Fourier, 5 (1953-54), 305-370. [EuDML: 73718] [MR: 74787] [Zbl: 0065.09903] [Google Scholar]
  6. R. M. JAMES, On the remarkable accuracy of the vortex lattice method. d. ComputerMethods in Appl. Mec. and eng., 1 (1972), 59-79. [MR: 423994] [Zbl: 0272.65121] [Google Scholar]
  7. B. HANOUZET, Espacesde Sobolev avec poid. . Application au problème de Dirichlet dans un demi-espace.] Rend, del Sem. Math, délia Univ. di Padova, XLVI (1971), 277-272. [EuDML: 107405] [MR: 310417] [Zbl: 0247.35041] [Google Scholar]
  8. J. L. HESS, Higher order numerical solution of the integral equation for the two-dimensional neumann problem. Computer Methods in Appl. Mec. and eng., 2 (1973), 1-15. [Zbl: 0253.76011] [Google Scholar]
  9. HORMANDER, Liniear partial differential operators. Springer Verlag, Berlin (1963). [Zbl: 0108.09301] [Google Scholar]
  10. J. L. LIONS et E. MAGENES, Problèmes aux limites non homogène, , tome I, DunodParis (1968). [Zbl: 0165.10801] [Google Scholar]
  11. S. G. MIKHLIN, Linear integral equations. Vol. II, Gordon and Breach. Science publishers inc. New-York (1960). [Google Scholar]
  12. N. I. MUSKHELISHVELI, Some basic problems of the mathematical theory of elastidty. Noordhoff L[td-Groningen Holland (1953). [Zbl: 0052.41402] [Google Scholar]
  13. J. NECAS, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). [MR: 227584] [Google Scholar]
  14. H.A. SCHENCK, Improved intégral formulation for acoustic problems. Journalof Acoust. Soc. of America, 44 (1968), 41-58. [Zbl: 0187.50302] [Google Scholar]
  15. R. SEELEY, Cours CIME, Stresa, sept. 1968, Cremonese, Roma (1969). [MR: 259335] [Google Scholar]
  16. G. T. SYMM, Integral equation methods in potential theory, II Proc. Roy. Soc. London A, 275 (1963), 33-46. [MR: 154076] [Zbl: 0112.33201] [Google Scholar]
  17. O. C. ZIENKIEWICZ, The Finite Element Method in Engineering Science. Mc Graw- Hill, London (1971). [MR: 315970] [Zbl: 0237.73071] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you