Free Access
Issue
R.A.I.R.O. Analyse Numérique
Volume 8, Number R2, 1974
Page(s) 129 - 151
DOI https://doi.org/10.1051/m2an/197408R201291
Published online 01 February 2017
  1. J. P. AUBIN, Approximation of elliptic boundary-value problems, Wiley-New York (1972), [MR: 478662] [Zbl: 0248.65063] [Google Scholar]
  2. J. P. AUBIN, Cours d'optimisation, Université de Paris IX, Dauphine (1973-74). [Google Scholar]
  3. I. BABUSKA, Error boundfor the finite element method, Num. Math., 16,322-333, (1971). [EuDML: 132037] [MR: 288971] [Zbl: 0214.42001] [Google Scholar]
  4. I. BABUSKA, The finite element method with Lagrangian multipliers, Num. Math.,20, 179-192 (1973). [EuDML: 132183] [MR: 359352] [Zbl: 0258.65108] [Google Scholar]
  5. F. BREZZI, Sur la méthode des éléments finis hybrides pour le problème biharmonique (submitted to Num. Math). [EuDML: 132332] [Zbl: 0316.65029] [Google Scholar]
  6. F. BREZZI, Sur une méthode hybride pour l'approximation du problème de la torsion d'une barre élastique (to appear on Ist. Lombardo Accad. Sci Lett. Rend. A). [MR: 378556] [Zbl: 0351.73081] [Google Scholar]
  7. F. BREZZI, Sur l'existence, unicité, et approximation numérique de problèmes de point de selle, C. R. Acad. Sc. Paris, Série A, 278 (18 mars 1974), 839-842, (1974). [MR: 338867] [Zbl: 0301.65031] [Google Scholar]
  8. F. BREZZI and L. D. MARINI, On the numerical solution ofplate bending problems by hybrid methods (to appear on Pubblicazioni del Laboratório di Analisi Numerical del C.N.R., Pavia). [Zbl: 0322.73048] [Google Scholar]
  9. P. G. CIARLET and P. A. RAVIART, General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. Rat. Mech. Anal., 46.177-199 (1972). [MR: 336957] [Zbl: 0243.41004] [Google Scholar]
  10. P. G. CIARLET and P. A. RAVIART, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. The Math. Found, of the F. E. M. (éd. by A. K. Aziz), Academic Press 1972. [MR: 421108] [Zbl: 0262.65070] [Google Scholar]
  11. M. CROUZEIX and P. A. RAVIART, Conforming and Nonconforming Finite Element methods for Solving the Stationary Stokes Equations. I RAIRO, V-3, déc. 1973. [MR: 343661] [Zbl: 0302.65087] [Google Scholar]
  12. B. FRAEUS DE VEUBEKE, Upper and lower bounds in matrix structural analysis, AGARDograph 72, Pergamon, 1964. [Google Scholar]
  13. B. FRAEUS DE VEUBEKE, Displacements and equilibrium models in the finite element method, Stress Analysis (éd. by O. C. Zienkiewicz and G. S. Holister), chap. p, Wiley, 1964. [Google Scholar]
  14. B. FRAEUS DE VEUBEKE, Bending and Stretching of plates, Proc. Conf. Matrix Method in Structural Mech., Air Force Technical Report AFF DL-TR-66-80, Nov. 1966. [Google Scholar]
  15. B. FRAEUS DE VEUBEKE, Variational principles and the patch-test (to appear on Int. J. for Numerical Meth. in Eng.). [Zbl: 0284.73043] [Google Scholar]
  16. B. FRAEUS DE VEUBEKE and O. C. ZIENKIEWICZ, Strain energy bounds in finite element analysis by slab analogy, Journal of Strain Analysis 2, 4, 265-271 (1967). [Google Scholar]
  17. B. M. IRONS and A. RAZZAQUE, Experience with patch-test for convergence of finite elements, The Math. Found of the F. E. M. (ed. by A. K. Aziz). Academic Press, 1972. [MR: 423839] [Zbl: 0279.65087] [Google Scholar]
  18. C. JOHNSON, On the convergence of a Mixed Finite Element Method for Plate Bending Problems, Num. Math., 21, 43-62 (1973). [EuDML: 132212] [MR: 388807] [Zbl: 0264.65070] [Google Scholar]
  19. C. JOHNSON, Convergence of another mixed finite-element method for plate bending problems, Chalmers Institute of Technology No. 1972-27. [Zbl: 0264.65070] [Google Scholar]
  20. F. KIKUCI and Y. ANDO, On the convergence of a mixed finite element scheme for plate bending, Nucl. Eng. and Design, 24, 357-373 (1973). [Google Scholar]
  21. LASCAUX and P. LESAINT (to appear). [MR: 341902] [Google Scholar]
  22. J. L. LIONS and E. MAGENES, Non homogeneous boundary value problems and applications, vol. 1, 2, Grundlehren B. 181,182, Springer, 1971. [Zbl: 0227.35001] [Google Scholar]
  23. B. MERCIER, Numerical solution of the biharmonic problem by mixed finite elements of class C° (to appear in Boll. U.M.I. (1974)). [MR: 378442] [Zbl: 0332.65058] [Google Scholar]
  24. T.H.H. PIAN and P. TONG, variational principle and the convergence of a finite-element method based on assumed stresses distribution, Inst. J. Solid Structures, 5, 463-472 (1969). [Zbl: 0167.52805] [Google Scholar]
  25. T.H. H. PIAN and P. TONG, Basis of finite element methods for solid continua, Int. J. for Numerical Meth. in Eng. 1, 3-28 (1969). [Zbl: 0252.73052] [Google Scholar]
  26. P.A. RAVIART, Méthode des éléments finis, Cours 1972-73 à l'Université de ParisVI. [Google Scholar]
  27. P. A. RAVIART and J. M. THOMAS,(to appear). [Google Scholar]
  28. G. SANDER, Application of the dual analysis principle, Proceedings of IUTAM, Liège, Aug. 1970. [Google Scholar]
  29. G. SANDER, Application de la méthode des éléments finis à la flexion des plaques, Coll. Publ. Fac. Sc. Appl. Univ., Liège n. 15 (1969). [Google Scholar]
  30. G. STRANG, Variational crimes in the finite element methods, The Math. Found.of the F.E.M. (ed. by A. K. Aziz) Academic Press (1972). [MR: 413554] [Zbl: 0264.65068] [Google Scholar]
  31. G. STRANG and G. Fix, An analysis of the finite éléments rnethod, Prentice Hall- New York, 1973. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]
  32. J. M. THOMAS, (to appear). [Google Scholar]
  33. K. YOSIDA, Functional Analysis, Grundlehren B. 123, Springer, 1965 . [Zbl: 0435.46002] [Google Scholar]
  34. O. C. ZIENKIEWICZ, The finite element methods in engineering science McGraw-Hill (1971). [MR: 315970] [Zbl: 0237.73071] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you