Free Access
Issue |
R.A.I.R.O. Analyse Numérique
Volume 10, Number R2, 1976
|
|
---|---|---|
Page(s) | 5 - 37 | |
DOI | https://doi.org/10.1051/m2an/197610R200051 | |
Published online | 01 February 2017 |
- 1. J.-P. AUBIN, Approximation des problèmes aux limites non homogènes et régularité de la convergence, Calcolo, Vol. 6, 1969, pp. 117-139. [Zbl: 0201.12601] [Google Scholar]
- 2. I. BABUSKA, Approximation by Hill Functions, Comment. Math., Univ. Carolinae, Vol. 11, 1970, pp. 787-811. [EuDML: 16399] [MR: 292309] [Zbl: 0215.46404] [Google Scholar]
- 3. I. BABUSKA, The Finite Element Method with Lagranian Multipliers, Numer. Math., vol. 20, 1973, pp. 179-192. [EuDML: 132183] [MR: 359352] [Zbl: 0258.65108] [Google Scholar]
- 4. I. BABUSKA, The Finite Element Method with Penalty, Math. Comp., Vol. 27, 1973, pp. 221-228. [MR: 351118] [Zbl: 0299.65057] [Google Scholar]
- 5. J. H. BRAMBLE and J. A. NITSCHE and A. H. SCHATZ, Maximum Norm Interior Estimates for Ritz Galerkin Methods, Math. Comp., vol. 29, 1976. [MR: 398120] [Zbl: 0316.65023] [Google Scholar]
- 6. J. H. BRAMBLE and J. E. OSBORN, Rate of Convergence Estimates for Non-Selfadjoint Eigenvalue Approximations, Math. Comp., Vol. 27, 1973, pp. 525-549. [MR: 366029] [Zbl: 0305.65064] [Google Scholar]
- 7. P. L. BUTZER and H. BERENS, Semi-Groups of Operators and Approximation, Die Grundlehren der math. Wissenschaften, Band 145, Springer-Verlag, New York, 1967. [MR: 230022] [Zbl: 0164.43702] [Google Scholar]
- 8. C. DE BOOR and G. FIX, Spline Approximation by Quasi-Interpolants, J. Approximation Theory, vol. 8, 1973, pp. 19-45. [MR: 340893] [Zbl: 0279.41008] [Google Scholar]
- 9. F. D. GUGLIELMO, Construction d'approximations des espaces de Sobolev sur des réseaux en simplexes, Calcolo, Vol. 6, 1969, pp. 279-331. [MR: 433113] [Zbl: 0198.46206] [Google Scholar]
- 10. G. FIX and G. STRANG, A Fourier Analysis of the Finite Element Method, Proc. CIME Conference, 1971, Cremonese, Rome (to appear). [MR: 443377] [Zbl: 0356.65096] [Google Scholar]
- 11. J. T. KING, New Error Bounds for the Penalty Method and Extrapolation, Numer. Math., vol. 23, 1974, pp. 153-165. [EuDML: 132295] [MR: 400742] [Zbl: 0272.65092] [Google Scholar]
- 12. J. A. NITSCHE and A. H. SCHATZ, On Local Approximation Properties of of $L_2$-projection on Spline-subspaces, Applicable Analysis, Vol. 2, No. 2, July 1972. [Zbl: 0239.41007] [Google Scholar]
- 13. J. A. NITSCHE, Interior Estimates for Ritz Galerkin Methods (preprint). [Zbl: 0298.65071] [Google Scholar]
- 14. I. J. SCHOENBERG, Approximation with Special Emphasis on Spline Functions, Academic Press, New York, London, 1969. [MR: 251408] [Zbl: 0259.00010] [Google Scholar]
- 15. E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970. [MR: 290095] [Zbl: 0207.13501] [Google Scholar]
- 16. A. ZYGMUND, Trigonometrical Series, Vol. 2, Cambridge, England, 1959. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.