Free Access
RAIRO. Anal. numér.
Volume 11, Number 1, 1977
Page(s) 93 - 107
Published online 01 February 2017
  1. 1. P. G. CIARLET and P. A. RAVIART, Interpolation Theory Over Curved Eléments, with Applications to Finite Element Methods. Computer Meth. Appl. Mech. Eng; Vol. 1, 1972, pp. 217-249. [MR: 375801] [Zbl: 0261.65079] [Google Scholar]
  2. 2. P. G. CIARLET, Numerical Analysis of the Finite Element Method. Séminaire de Mathématiques Supérieures, Univ. de Montréal, 1975. [MR: 495010] [Zbl: 0363.65083] [Google Scholar]
  3. 3. G. COMINI, S. DEL GUIDICE, R. W. LEWIS and O. C. ZIENKIEWICZ, Finite Element Solution of Non-Linear Heat Conduction Problems with Special Reference to Phase Change. Int. J. Numer. Meth. Eng., Vol. 8, 1974, pp. 613-624. [Zbl: 0279.76045] [Google Scholar]
  4. 4. J. Jr. DOUGLAS and T. DUPONT, Galerkin Methods for Parabolic Equations. SIAM J. Numer. Anal., Vol. 7, 1970, pp. 575-626. [MR: 277126] [Zbl: 0224.35048] [Google Scholar]
  5. 5. T. DUPONT,FAIRWEATHER G. and J. P. JOHNSON, Three-Level Galerkin Methods for Parabolic Equations. SIAM J. Numer. Anal; Vol. 11, 1974, pp. 392-410. [MR: 403259] [Zbl: 0313.65107] [Google Scholar]
  6. 6. P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York-London, 1962. [MR: 135729] [Zbl: 0112.34901] [Google Scholar]
  7. 7. J. D. LAMBERT, Computational Methods in Ordinary Differential Equations.Wiley, London, 1972. [MR: 423815] [Zbl: 0258.65069] [Google Scholar]
  8. 8. M. LEES, A priori Estimates for the Solutions of Difference Approximations to Parabolic Differential Equations. Duke Math. J., Vol. 27, 1960, pp. 287-311. [MR: 121998] [Zbl: 0092.32803] [Google Scholar]
  9. 9. W. LINIGER, A Criterion for A-Stability of Linear Multistep Integration Formulae. Computing, Vol.3, 1968, pp. 280-285. [MR: 239763] [Zbl: 0169.19902] [Google Scholar]
  10. 10. C. MIRANDA, Partial Differential Equations of Elliptic Type (second rev. edition). Springer, Berlin-Heidelberg-New York, 1970. [MR: 284700] [Zbl: 0198.14101] [Google Scholar]
  11. 11. M. F. WHEELER, A priori L2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations. SIAM J. Numer. Anal., Vol. 10, 1973, pp. 723-759. [MR: 351124] [Zbl: 0232.35060] [Google Scholar]
  12. 12. M. ZLAMAL, Curved Elements in the Finite Element Method I. SIAM J. Numer. Anal., Vol. 10, 1973, pp. 229-240. [MR: 395263] [Zbl: 0285.65067] [Google Scholar]
  13. 13. M. ZLAMAL, Curved Elements in the Finite Element Method II. SIAM J. Numer. Anal., Vol. 11, 1974, pp. 347-362. [MR: 343660] [Zbl: 0277.65064] [Google Scholar]
  14. 14. M. ZLAMAL, Finite Element Multistep Discretizations of Parabolic Boundary Value Problems. Mat. Comp., vol. 29, 1975, pp. 350-359. [MR: 371105] [Zbl: 0302.65081] [Google Scholar]
  15. 15. M. ZLAMAL, Finite Element Methods in Heat Conduction Problems. To appear in The Mathematics of Finite Elements and Applications. [Zbl: 0348.65096] [MR: 451785] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you