Free Access
Issue
RAIRO. Anal. numér.
Volume 11, Number 2, 1977
Page(s) 135 - 144
DOI https://doi.org/10.1051/m2an/1977110201351
Published online 01 February 2017
  1. 1. H. BREZIS, Monotonicity in Hilbert spaces and some applications to nonlinear partial differential equations. Contributions to nonlinear functional analyzis, E. Zarantonello (ed.), Academic Press, New York, 1971, pp. 101-156. [MR: 394323] [Zbl: 0278.47033]
  2. 2. H. BREZIS, Multiplicateur de Lagrange en torsion élasto-plastique, Arch. Rat. Mech. Anal., 2972, pp. 32-40. [MR: 346346] [Zbl: 0265.35021]
  3. 3. H. BREZIS, G. STAMPACCHIA, Sur la régularité de solutions d'inéquations elliptiques, Bull. Soc. Math. France, Vol. 96, 1968, 153-180. [EuDML: 87105] [MR: 239302] [Zbl: 0165.45601]
  4. 4. F. BREZZI, W. HAGER, P. A. RAVIART, Error estimates for variational inequalities, to appear. [Zbl: 0427.65077]
  5. 5. P. G. CIARLET, Numerical analysis of the finite element method, Cours d'été d'Analyse Numérique, 1975, Université de Montréal. [MR: 495010] [Zbl: 0363.65083]
  6. 6. P. G. CIARLET, The finite element method, North Holland (to appear). [Zbl: 0383.65058] [MR: 520174]
  7. 7. G. DUVAUT, J. L. LIONS, Les inéquations en Mécanique et en Physique, Dunod, Paris, 1972. [MR: 464857] [Zbl: 0298.73001]
  8. 8. R. S. FALK, Approximate solutions of some variational inequalities with order of convergence estimates, Ph. D. Thesis, Cornell University, Ithaca, N. Y., 1971.
  9. 9. R. GLOWINSKI, Sur l'approximation d'une inéquation variationnelle elliptique de type Bingham, R.A.I.R.O., Analyse Numérique Vol. 10, 12 (1976) 13-30. [EuDML: 193281] [MR: 520279]
  10. 10. R. GLOWINSKI, J. L. LIONS, R. TREMOLIERES, Approximation des inéquations variationnelles, Dunod, Paris, 1976. [Zbl: 0358.65091]
  11. 11. C. JOHNSON, Existence theorems for plasticity problems, J. Math. Pures et Appliquées, 55 (1976) 431-444. [MR: 438867] [Zbl: 0351.73049]
  12. 12. C. JOHNSON, A hybrid finite element method for plasticity problems with hardening, to appear. [MR: 519017] [Zbl: 0374.73039]
  13. 13. O. A. LADYZENSKAYA, The mathematical theory of viscous incompressible flow, Gordon & Breach, New York, 1969. [MR: 254401] [Zbl: 0184.52603]
  14. 14. J. MANDEL, Cours de Mécanique des Milieux Continus, T. 2, Mécanique des Solides, Gauthier-Villars, Paris, 1966. [Zbl: 0148.20305]
  15. 15. B. MERCIER, Recherche numérique d'un champ de déplacements en élasto-plasticité, Rapport Laboria n° 71, Iria, 78150 Le Chesnay, France, 1974.
  16. 16. B. MERCIER, Approximation par éléments finis, et résolution par un algorithme de pénalisation-dualité d'un problème d'élasto-plasticité, C. R. Acad. Sc. Paris, T. 280, Série A, 1975, pp. 287-290. [MR: 381471] [Zbl: 0302.73044]
  17. 17. B. MERCIER, Une méthode de résolution du problème des charges limites utilisant les fluides de Bingham, C. R. Acad. Sc. Paris, T. 281, Série A, 1975, pp. 525-527. [MR: 386457] [Zbl: 0319.76009]
  18. 18. R. T. ROCKAFELLAR, Convex analysis, Princeton, corollary 28-2-2, 1970, p. 279. [MR: 274683] [Zbl: 0193.18401]
  19. 29. M. J. STRAUSS, Variations of Korn's and Sobolev's inequalities, Proc. of Symposia in Pure Math., Vol. XXIII, A.M.S., Providence, R. I., 1973, pp. 207-214. [MR: 341064] [Zbl: 0259.35008]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you