Free Access
Issue |
RAIRO. Anal. numér.
Volume 11, Number 4, 1977
|
|
---|---|---|
Page(s) | 369 - 400 | |
DOI | https://doi.org/10.1051/m2an/1977110403691 | |
Published online | 01 February 2017 |
- 1. J. P. AUBIN, Cours d'optimisation, Cahiers mathématiques de la décision, Université, Paris-IX, 1972, Approximation of Elliptic Boundary Value Problems, Wiley, Interscience, 1972. [Google Scholar]
- 2. A. BENSOUSSAN,J. L. LIONS et R. TEMAM, Sur les méthodes de décomposition, de coordination, de décentralisations et applications IRIA, Cahier n° 11, t. 2, 1972. [Zbl: 0275.90042] [Google Scholar]
- 3. F. BREZZI, Approximation of Saddle Points, R.A.I.R.O., 2, 1974, p. 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
- 4. F. BREZZI et G. SACCHI, A Finite Element Approximation of a Variational Inequality Related to Hydraulics (à paraître). [Zbl: 0353.76068] [Google Scholar]
- 5. I. EKELAND et R. TEMAM, Analyse convexe et problèmes variationnels, Dunod-Bordas, Paris, 1974. English translation : North Holland, Amsterdam, 1975. [MR: 463993] [Zbl: 0281.49001] [Google Scholar]
- 6. R. S. FALK, Error Estimates for the Approximation of a Class of Variational Inequalities, Math. of Comp., vol. 28, 1974, p. 963-971. [MR: 391502] [Zbl: 0297.65061] [Google Scholar]
- 7. R. GLOWINSKI et A. MARROCO, Sur l'approximation par éléments finis d'ordre 1 et la résolution par pénalisation dualité d'une classe de problèmes de Dirichlet non linéaires, R.A.I.R.O., vol. 2, 1975, p. 41-76. [EuDML: 193269] [Zbl: 0368.65053] [Google Scholar]
- 8. T. K A T O, Perturbation Theory for Linear Operators, Springer Verlag, Heidelberg-New York, 1966. [MR: 203473] [Zbl: 0148.12601] [Google Scholar]
- 9. J. L. LIONS, Quelques méthodes de résolution de problèmes aux limites non linéaires, Dunod, Paris, 1969. [MR: 259693] [Zbl: 0189.40603] [Google Scholar]
- 10. M. C. PELISSIER, Sur quelques problèmes non linéaires en glaciologie, Thèse, Université Paris-Sud, 1975. [MR: 439015] [Google Scholar]
- 11. P. A. RAVIART et J. M. THOMAS, Primal Hybrid Finite Element Methods for 2nd Order Elliptic Equations (à paraître). [Zbl: 0364.65082] [Google Scholar]
- 12. P. A. RAVIART et J. M. THOMAS, A Mixed Finite Element Method for 2nd Order Elliptic Problems, (à paraître). [Zbl: 0362.65089] [Google Scholar]
- 13. R. TEMAM, Navier Stokes Equations, North Holland, Amsterdam (à paraître en 1976. [MR: 603444] [Zbl: 0383.35057] [Google Scholar]
- 14. F. TREVES, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1970. [MR: 225131] [Zbl: 0171.10402] [Google Scholar]
- 15. K. YOSIDA, Functional Analysis, Springer Verlag, Heidelberg-New York, 1966. [Zbl: 0435.46002] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.