Free Access
Issue
RAIRO. Anal. numér.
Volume 12, Number 2, 1978
Page(s) 173 - 202
DOI https://doi.org/10.1051/m2an/1978120201731
Published online 01 February 2017
  1. 1. S. AGMON, A. DOUGLIS and L. NIRENBERG, Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions. L, Comm. Pure Appl. Math., vol. 12, 1959, pp. 623-727. [MR: 125307] [Zbl: 0093.10401]
  2. 2. Yu. M. BEREZANSKH and Ya. A. ROITBERG, A Theorem on Homeomorphims and the Green's Function for General Elliptic Boundary Problems (in Russian), Ukrain. Math. Z., vol. 19, 1967, pp. 3-32 (English translation, Ukrain. Math. J., vol. 19, 1967, pp. 509-530). [MR: 218739] [Zbl: 0206.11302]
  3. 3. L. BERS, F. JOHN and M. SCHECHTER, Partial Differential Equations, Interscience, New York, 1964. [MR: 163043] [Zbl: 0126.00207]
  4. 4. J. H. BRAMBLE and S. HILBERT, Bounds for a Class of Linear Functionals with Applications to Hermite Interpolation, Numer. Math., vol. 16, 1971, pp. 362-369. [EuDML: 132041] [MR: 290524] [Zbl: 0214.41405]
  5. 5. P. G. CIARLET, Numerical Analysis of the Finite Element Method, Séminaire de Mathématiques supérieures, Presse de l'Université de Montréal, 1976. [MR: 495010] [Zbl: 0363.65083]
  6. 6. P. G. CIARLET and P.-A. RAVIART, General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element Methods, Arch. Rat. Mech. Anal., vol. 46, 1972, pp. 177-199. [MR: 336957] [Zbl: 0243.41004]
  7. 7. P. G. CIARLET and P.-A. RAVIART, Interpolation Theory Over Curved Elements, with Applications to Finite Element Methods, Comput. Methods Appl. Mech.Engrg., vol. 1, 1972, pp. 217-249. [MR: 375801] [Zbl: 0261.65079]
  8. 8. P. G. CIARLET and P.-A. RAVIART, The Combined Effect of Curved Boundaries and Numerical Integration in Isoparametric Finite Element Methods, The Mathematical Foundations of the Finite Element Method, A. K. Aziz, Ed., Academic Press, New York, 1973, pp. 409-474. [MR: 421108] [Zbl: 0262.65070]
  9. 9. G. J. Fix, Effects of Quadrature Errors in Finite Element Approximation of Steady State, Eigenvalue and Parabolic Problems, The Mathematical Foundation of the Finite Element Method, A.K. Aziz, Ed., Academic Press, New York, 1973, pp. 525-556. [MR: 413546] [Zbl: 0282.65081]
  10. 10. Yu. P. KRASOVSKII, An investigation of the Green's function (in Russian), Uspehi Mat. Nauk., vol. 20, 1965, pp. 267-268.
  11. 11. J. NECAS, Les Méthodes directes en Théorie des Équations elliptiques, Masson, Paris, 1967. [MR: 227584]
  12. 12. J. A. NITSHE, L∞-convergence for Finite Element Approximation, 2. Conference on Finite Eléments, Rennes, France, May 12-14, 1975.
  13. 13. J. A. NITSCHE and A. H. SCHATZ, Interior Estimates for Ritz-Galerkin Methods, Math. Comput., vol. 28, 1974, pp. 937-958. [MR: 373325] [Zbl: 0298.65071]
  14. 14. A. H. SCHATZ, An Observation Concerning Ritz-Galerkin Methods with Indefinite Bilinear Forms, Math. Comput., vol. 28, 1974, pp. 959-962. [MR: 373326] [Zbl: 0321.65059]
  15. 15. A. H. SCHATZ and L. B. WAHLBIN, Interior Maximum Norm Estimates for Finite Element Methods, Math. Comput., vol 31, 1977, pp. 414-442. [MR: 431753] [Zbl: 0364.65083]
  16. 16. A. H. SCHATZ and L. B. WAHLBIN, Maximum Norm Estimates in the Finite Element Method on Plane Polygonal domains, Parti, Math. Comput. (to appear). [Zbl: 0382.65058]
  17. 17. R. SCOTT, Optimal L∞ Estimates for the Finite Element Method on Irregular Meshes, Math. Comput., vol. 30, 1976, pp. 681-697. [MR: 436617] [Zbl: 0349.65060]
  18. 18. E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N. J., 1970. [MR: 290095] [Zbl: 0207.13501]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you