Free Access
RAIRO. Anal. numér.
Volume 12, Number 3, 1978
Page(s) 211 - 236
Published online 01 February 2017
  1. 1 J P AUBIN, Approximation of Elliptic Boundary Value Problems, Wiley, N Y , 1972 [MR: 478662] [Zbl: 0248.65063] [Google Scholar]
  2. 2 I BABUSKA, The Finite Element Method with Lagraman Multipliers, Num Math ,Vol 20, 1973, pp 179-192 [EuDML: 132183] [MR: 359352] [Zbl: 0258.65108] [Google Scholar]
  3. 3 I BABUSKA, The Finite Element Method with Penalty, Math Comp , Vol 27, 1973, pp 221-228 [MR: 351118] [Zbl: 0299.65057] [Google Scholar]
  4. 4 M BERCOVIER, A Family of Fini te Eléments with Penahzation for the NumencalSolution ofStokes and Navier-Stokes Equations, m Proc I F I P Conf 1977,North-Holland, Amsterdam, 1977 [MR: 483540] [Zbl: 0383.65065] [Google Scholar]
  5. 5 M BERCOVIER, On the Penalty and Extrapolation Method (to appear) [Zbl: 0486.73070] [Google Scholar]
  6. 5 bis. M BERCOVIER, Thèse de Doctorat d'État, Rouen, 1976 [Google Scholar]
  7. 6 M BERCOVIER, and M ENGELMAN A Finite Element for the Numencal Solution ofViscous Incompressible flous (to appear m J Comp Phys ) [Zbl: 0395.76040] [Google Scholar]
  8. 7 M BERCOVIER and F LIVNF A 4 CSTQuadïilateial Element for Incompressible andNecul Incompressible Mateuals (to appear in CALCOLO) [Zbl: 0418.73009] [Google Scholar]
  9. 8 F BREZZI On the Existence, Uniqueness and Approximation of saddle Point ProblemsAnsing jiom Lagrangian Multipliers, R A I R O Vol 8 R-2 1974 pp 129-151 [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  10. 9 F BREZZI and P A RAVIART, Mixed Finite Element Methods jor Ath OrderElhptic Equations, Topics m Numencal Analysis, Vol III, J J H MILLER Ed , Academic Press [Google Scholar]
  11. 10 P G CIARLET, Numencal Analysis oj the Finite Element Method for Elliptic BoundaryValue Problems, North Holland, Amsterdam, 1977 [MR: 1115235] [Google Scholar]
  12. 11 A J CHORIN, A Numencal Method for Solving Incompressible Problems, J CompPhys , Vol 2, 1967 [Zbl: 0149.44802] [Google Scholar]
  13. 12 M CROUZEIX and P A RAVIART, Conforming and non Conforming Finite ElémentsMethods for Solving the Statwnary Stokes Equation R A I R O, Vol 7, R-3, 1973, pp 33-76 [EuDML: 193250] [MR: 343661] [Zbl: 0302.65087] [Google Scholar]
  14. 13 G DUVAUT and J L LIONS, Les inéquations en mécanique et en physique, Dunod,Pans, 1972 [MR: 464857] [Zbl: 0298.73001] [Google Scholar]
  15. 14 I EKELAND and R TEMAM, Analyse convexe et problèmes vanationnels , Dunod, Pans, 1974 [Zbl: 0281.49001] [Google Scholar]
  16. 15 M FORTIN, Thèse de Doctorat d'État, Pans, 1972 [Google Scholar]
  17. 15 bis. M FORTIN, An Analysis of the Convergence of Mixed Finite Element Methods, R A I R O , Vol 11, R-3, 1977, pp 341-354 [EuDML: 193306] [MR: 464543] [Zbl: 0373.65055] [Google Scholar]
  18. 16 L R HERRMANN Elastuttx Equations for Incompressible or Nearly IncompressibleMaterials by a Vanational Theorem A I A A Journal, Vol 3, 1965, pp 1896-1900 [MR: 184477] [Google Scholar]
  19. 17 P A RAVIART and J M THOMAS, A Mixed Finite Element Method for 2nd OrderElliptic Problems, in Proc Symp on the Mathematical aspects oj the FEM Rome,December 1975, Lecture notes m Mathematics 606, Springer Verlag, pp 292-315 [MR: 483555] [Zbl: 0362.65089] [Google Scholar]
  20. 18 R TEMAM, Une méthode d'approximation de la solution des équations de Navier-Stokes, Bull Soc Math Fr , Vol 96, 1968 [EuDML: 87104] [MR: 237972] [Zbl: 0181.18903] [Google Scholar]
  21. 19 R TEMAN, Navier-Stokes équations, North Holland, Amsterdam, 1977 [Zbl: 0383.35057] [Google Scholar]
  22. 20 J M THOMAS, Thèse de Doctorat d'État, Pans, 1977 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you