Free Access
Issue
RAIRO. Anal. numér.
Volume 12, Number 3, 1978
Page(s) 283 - 295
DOI https://doi.org/10.1051/m2an/1978120302831
Published online 01 February 2017
  1. 1 J -C PAUMIER Analyse numérique d'un problème de coque élastique mince en théories lineaire et non lineaire, Thèse de 3e cycle, Université de Pans-VI, 1977, Stable Solutions to a Shell Problem (a paraître dans Computer Methods in Applied Mechanics and Engineering) [Google Scholar]
  2. 2 W T KOITER, On the Nonlinear Theory of Thin Elastic shells, Proc Kon Ned Akad Wetensch , vol B 69, 1966, p 1-54 [MR: 192706] [Google Scholar]
  3. 3 P ROUGEE, Equilibre des coques élastiques minces inhomogènes en théorie non linéaire, Thèse, Université de Paris 1969 [Google Scholar]
  4. 4 P G CIARLET, Numerical Analysis of the Finite Element Method, Séminaire de Mathématiques supérieures Université de Montreal 16 juin-11 juillet 1975 [MR: 495010] [Zbl: 0363.65083] [Google Scholar]
  5. 5 L SCHWARTZ Theorie des Distributions 1966, Hermann Paris [MR: 209834] [Zbl: 0149.09501] [Google Scholar]
  6. 6 P G CIARLET et P A RAVIART, General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element methods, Arch Rat Mech Anal , vol 46, n° 3, 1972, p 177-189 [MR: 336957] [Zbl: 0243.41004] [Google Scholar]
  7. 7 J M ORTEGA The Newton Kantorovitch Theorem, Amer Math Monthly, tome75, 1968, p 658-660 [MR: 231218] [Zbl: 0183.43004] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you