Free Access
Issue
RAIRO. Anal. numér.
Volume 12, Number 4, 1978
Page(s) 377 - 400
DOI https://doi.org/10.1051/m2an/1978120403771
Published online 01 February 2017
  1. 1. C. CARASSO, L'algorithme d'échange en optimisation convexe, Thèse, Grenoble, 1973. [Google Scholar]
  2. 2. C. CARASSO, Un algorithme de minimisation de fonctions convexes avec ou sans contraintes : l'algorithme d'échange. 7th I.F.I.P. Conference on Optimizatîon Techniques, Springer-Verlag, 1975, 2, pp. 268-282. [Zbl: 0347.90049] [Google Scholar]
  3. 3 C CARASSO and P J LAURENT, Un algorithme pour la minimisation d'une fonctionnelle convexe sur une variété affine Séminaire d'Analyse numérique, Grenoble, 18 octobre 1973 [Google Scholar]
  4. 4 C CARASSO and P J LAURENT, Un algorithme de minimisation en chaîne en optimisation convexe Séminaire d'Analyse numérique, Grenoble, 29 janvier 1976 S I A M J Control and Optimization, vol 16, No 2, 1978 pp 209-235 [MR: 525720] [Zbl: 0383.90086] [Google Scholar]
  5. 5 C CARASSO and P J LAURENT, Un algorithme general pour l'approximation au sens de Tchebycheff de fonctions bornées sur un ensemble quelconque Approximations-Kolloqmum, Bonn, June 8-12, 1976, Lecture Notes m Math , No 556, Springer-Verlag, Berlin, 1976 [MR: 616090] [Zbl: 0352.65010] [Google Scholar]
  6. 6 E W CHENEY and A GOLDSTEIN, Newton's Method for Convex Programming and Tchebyscheff Approximation, Num Math , vol 1, 1959, pp 253-268 [EuDML: 131435] [MR: 109430] [Zbl: 0113.10703] [Google Scholar]
  7. 7 A A GOLDSTEIN, Constiuctive Real Analysis, Haiper's Series in Modem Mathematics, Harper and Row, 1967 [MR: 217616] [Zbl: 0189.49703] [Google Scholar]
  8. 8 P J LAURENT, Approximation et Optimisation, Hermann Pans, 1972 [MR: 467080] [Zbl: 0238.90058] [Google Scholar]
  9. 9 P J LAURENT, Exchange Algonthm in Convex Analysis Conference on pproximation theory, The Umv of Texas, Austm, 1973, Acad Press [MR: 331181] [Zbl: 0326.90051] [Google Scholar]
  10. 10 R T ROCKAFELLAR, Convex Analysis, Pnnc Umv Press 1970 [MR: 274683] [Zbl: 0193.18401] [Google Scholar]
  11. 11 E L STIEFEL, Uber diskrete und lineare Tschebyscheff-ApproximatwnenNum Math , vol 1, 1959, pp 1-28 [EuDML: 131415] [Zbl: 0083.11501] [Google Scholar]
  12. 12 E L STIEFEL Numencal Methods of Tschebycheff Approximation In On numencal Approximation, R LANGER, Ed , Umv of Wisconsm, 1959, pp 217-232 [MR: 107961] [Zbl: 0083.35502] [Google Scholar]
  13. 13 E L STIEFEL, Note on Jordan Elimination, Linear Programming and Tchebycheff Approximation, Num Math , vol 2, 1960, pp 1-17 [EuDML: 131439] [MR: 111124] [Zbl: 0097.32306] [Google Scholar]
  14. 14 H J TOPFER, Tschebyscheff-Approximation bei nicht erfullter Haarscher Bedingung, Zerts fur angew Math und Mech , vol 45, 1965, T 81-T 82 [MR: 203323] [Zbl: 0148.04101] [Google Scholar]
  15. 15 H J TOPFER, Tschebyscheff-Approximation und Austauschverfaren bei nicht erfullter Haarscher Bedingung Tagung, Oberwolfach, 1965 I S N M 7, Birkhauser Verlag 1967, pp 71-89 [MR: 230019] [Zbl: 0155.48005] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you