Free Access
RAIRO. Anal. numér.
Volume 13, Number 4, 1979
Page(s) 369 - 387
Published online 01 February 2017
  1. 1. F. BREZZI and P. A. RAVIART, Mixed Finite Element Methodsfor 4th Order Ellipticquations In Topics inNumerical Analysis, Vol.III, J. J. H. MILLER, Ed., Academic Press, 1978. [Zbl: 0434.65085] [Google Scholar]
  2. 2. P. G. CIARLET, Conforming and Nonconforming Finite Element Methods for SolvingthePlate ProblemIn Numerical Solution of Differential Equations, G. A.WATSON, Ed., Springer, 1974. [MR: 423832] [Zbl: 0285.65072] [Google Scholar]
  3. 3. P.G. CIARLET and P.A. RAVIART, A mixed Finite Element Method for the Biharmonic Equation In Mathematical Aspects of Finite Eléments in Partial Differential Equations, C. DEBOOR, Ed., Academic Press, 1974. [Zbl: 0337.65058] [Google Scholar]
  4. 4. P. LASCAUX and P. LESAINT, Some Nonconforming Finite Elements for the Plate Bending Problem, R.A.I.R.O., Anal. Nurnér., Vol. 1, 1975, pp. 9-53 [EuDML: 193267] [MR: 423968] [Zbl: 0319.73042] [Google Scholar]
  5. 5. T. MIYOSHI, Finite Element Method for the Solution of A-th Order Partial Differential Equations, Kumamoto J. Sc.Math., Vol. 9, 1973, pp. 87-116. [MR: 386298] [Zbl: 0249.35007] [Google Scholar]
  6. 6. J. A. NITSCHE, Convergence of Nonconforming Methods In Numerical Solution of Differential Equations, G. A. WATSON, Ed., Springer, 1974. [MR: 658316] [Zbl: 0367.65064] [Google Scholar]
  7. 7. J. A.N NITSCHE, On Projection Methods for the Plate Problem In Numerical Analysis, J. DESCLOUX and J. MARTI, Ed., Birkhauser, 1977. [MR: 468521] [Zbl: 0361.65097] [Google Scholar]
  8. 8. R. RANNACHER, Punktweise Konvergenz der Methode der finiten Elemente beimPlattenproblem, Manuscripta math., Vol. 19, 1976, pp. 401-416. [EuDML: 154424] [MR: 423841] [Zbl: 0383.65061] [Google Scholar]
  9. 9. R. RANNACHER, Finite Element Approximation of Simply Supported Plates and the Babuska Paradox, Z. Angew. Math. Mech., Vol. 59, 1979, pp. T 73-T 76 [MR: 533989] [Zbl: 0421.73072] [Google Scholar]
  10. 10. R RANNACHER, Nonconforming Finite Element Methods for Eigenvalue Problems in Linear Plate Theory, Numer. Math., Vol. 32, 1979 (to appear). [EuDML: 132626] [MR: 545740] [Zbl: 0394.65035] [Google Scholar]
  11. 11. R. SCHOLZ, Approximation von Sattelpunkten mit finiten Elementen In Finite Elemente,Tagungsband, Bonn, Math. Schr., Vol. 89, 1976, pp. 53-66. [MR: 471377] [Zbl: 0359.65096] [Google Scholar]
  12. 12. R. SCHOLZ, A Mixed Methodfor 4th Order Problems using Linear Finite Eléments, R.A.I.R.O., Anal. Numer., Vol. 12, 1978, pp. 85-90. [EuDML: 193314] [MR: 483557] [Zbl: 0382.65059] [Google Scholar]
  13. 13. J. FREHSE and R. RANNACHER, Eine $L^1$-Fehlerabschätzung für diskrete Grundlösungen in der Methode der finiten Elemente In Finite Elemente,Tagungsband, Bonn, Math.Schr., Vol. 89, 1976, pp. 92-114. [MR: 471370] [Zbl: 0359.65093] [Google Scholar]
  14. 14. J. A. NITSCHE, $L_\infty $-convergence of finite element approximations, Second Conference on Finite Eléments, Rennes, 1975. [MR: 568857] [Zbl: 0362.65088] [Google Scholar]
  15. 15. R. SCOTT Optimal $L^\infty $ estimates for the finite element method on irregular meshes, Math. Comp., Vol. 30, 1976, pp. 681-697. [MR: 436617] [Zbl: 0349.65060] [Google Scholar]
  16. 16. R. B. KELLOGG and J. E. OSBORN, A Regularity Resuit for the Stokes Problem in aConvex Poligon. J. Funet. Anal., Vol. 21, 1976, pp.397-431. [MR: 404849] [Zbl: 0317.35037] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you