Free Access
Issue
RAIRO. Anal. numér.
Volume 14, Number 2, 1980
Page(s) 149 - 173
DOI https://doi.org/10.1051/m2an/1980140201491
Published online 31 January 2017
  1. 1. L BAUER et E REISS, Non Linear Buckling of Rectangular PlatesBuckhng of Rectangular Plates, SIAM, Num Anal, vol 13, 1965, p 603-627. [Google Scholar]
  2. 2. F BREZZI, On the Existence, Uniqueness and Approximation of Saddle-PointProblems Arising from Lagrangian Multipliers, RAIRO , Analyse numérique,of R-2, 1974, p 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  3. 3. F. BREZZI et P. A. RAVIART, Mixed Finite Element Methods for Fourth Order EllipticEquations, Rapport Interne, n° 9, École Polytechnique, Palaiseau, 1976. [Google Scholar]
  4. 4. C. CANUTO, Eigenvalue Approximations by Mixed Methods, R.A.I.R.O., Analyse numérique, vol. 12, 1978, p. 27-50. [EuDML: 193309] [MR: 488712] [Zbl: 0434.65032] [Google Scholar]
  5. 5. P. G. CIARLET, TheFinite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  6. 6. P. G. CIARLET, Derivation of the von Karman Equations from Three-Dimensional Elasticity, Proceedings of the Fourth Conference on Basic Problems in Numerical Analysis, Plzen, 1978 (à paraître). [MR: 566153] [Zbl: 0445.73043] [Google Scholar]
  7. 7. P. G. CIARLET et P. A. RAVIART, A Mixed Finite Element Method for the Biharmonic Equation in Mathematical Aspects of 'Finite Eléments in Partial Differentiat Equations, C. DE BOOR, éd. 1974, p. 125-145. [MR: 657977] [Zbl: 0337.65058] [Google Scholar]
  8. 8. S. KESAVAN, Homogenization of Elliptic Eigenvalue Problems, Applied Mathematicsand Optimizalion. vol. 5, n° 2, 1979, p. 153-167. [MR: 533617] [Zbl: 0415.35061] [Google Scholar]
  9. 9. S. KESAVAN, La méthode de Kikuchi appliquée aux équations de von Karman, Numerische Mathematik, vol.32, 1979, p. 209-232. [EuDML: 132606] [MR: 529910] [Zbl: 0395.73054] [Google Scholar]
  10. 10. S. KESAVAN et M. VANNINATHAN, Sur une méthode d'éléments finis mixte pour l'équation biharmonique, R.A.I.R.O., Analyse numérique, vol. 11, n° 3, 1977, p. 255-270. [EuDML: 193301] [MR: 451777] [Zbl: 0372.65039] [Google Scholar]
  11. 11. F. KIKUCHI, An Iterative Finite Element Scheme for Bifurcation Analysis of Semi-Linear Elliptic Equations, Report n° 542, Institute of space and Aeronautical Science,Univ. of Tokyo, Japan, 1976. [Google Scholar]
  12. 12. V. A. KONDRAT'EV, Boundary Value Problems for Elliptic Equations in Domains with Conical or Angular Points, Trudy Moskov. Mat.Obsc, vol. 16, 1967, p. 209-292. [MR: 226187] [Zbl: 0162.16301] [Google Scholar]
  13. 13. B. MERCIER et J. RAPPAZ, Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods, Rapport Interne, n° 33, École Polytechnique, Palaiseau, 1978. [Google Scholar]
  14. 14. T. MIYOSHI, Finite Element Method for the Solution of Fourth Order Partial Differential Equations, Kumamoto J. Se. (Math.), vol.9, 1973, p. 87-116. [MR: 386298] [Zbl: 0249.35007] [Google Scholar]
  15. 15. R. RANNACHER, Non Conforming Finite Element Methods for Eigenvalue Problems in Linear Plate Theory, Preprint, n° 191, Univ. of Bonn, W. Germany, 1978. [Zbl: 0394.65035] [Google Scholar]
  16. 16. R. RANNACHER, On Non-Conforming and Mixed Finite Element Methods for Plate Bending Problems, Thelinear case, R.A.I.R.O., Analyse numérique (à paraître). [EuDML: 193348] [Zbl: 0425.35042] [Google Scholar]
  17. 17. R. SCHOLZ, Approximation von Sattelpunkten mit Finiten Elementen, Bonner Math.Schrifter, vol. 89, 1976, p. 53-66. [MR: 471377] [Zbl: 0359.65096] [Google Scholar]
  18. 18. G. STRANG et G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Inc. Englewood Cliffs, 1973. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you