Free Access
RAIRO. Anal. numér.
Volume 14, Number 3, 1980
Page(s) 249 - 277
Published online 31 January 2017
  1. 1 I. BABU KA, Error-Bounds for Finite Element Method, Numer Math , Vol. 16, 1971, pp. 322-333. [EuDML: 132037] [MR: 288971] [Zbl: 0214.42001] [Google Scholar]
  2. 2 I. BABU KA and A. Aziz, Survey Lectures on the Mathematical Foundations of the Finite Element Method in The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, A. K. Aziz, Ed, Academic Press, New York, 1973, pp. 5-359. [Zbl: 0268.65052] [Google Scholar]
  3. 3 I. BABU KA,J. OSBORN and J. PITKARANTA, Analysis of Mixed Methods for 4th Order Elliptic Equations (to appear). [Google Scholar]
  4. 4 J. BRAMBLE and S. HILBERT, Estimation of Linear Functionals on Sobolov Spaces with Application to Fourier Transforms and Spline Interpolation, S.I. A. M . J. Numer Anal, Vol .13, 1976, pp. 185-197. [Zbl: 0201.07803] [Google Scholar]
  5. 5 F. BREZZI, On theExistence, Uniqueness and Approximation of Saddle-Point Problems Ansing from Lagrangian Multipliers, R. A. I. R. O. , Vol. 8 R2, 1974, pp 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  6. 6 F. BREZZI, Sur la méthode des éléments finis hybrides pour le problème biharmonique, Numer. Math., Vol. 24, 1975, pp 103-131. [EuDML: 132332] [MR: 391538] [Zbl: 0316.65029] [Google Scholar]
  7. 7 F. BREZZI and P. RAVIART, Mixed Finite Element Methods for 4th Ordej Elliptic Equations, Topics inNumencal Analysis III, J. MILLER, Ed , Academic Press, 1978. [Zbl: 0434.65085] [Google Scholar]
  8. 8 P. GIARLET, The Finite Element Method for Elliptic Problems, North-Holland, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  9. .9 P. CIARLET and P. RAVIART, A Mixed Finite Element Method for the Biharmonic Equation, Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DE BOOR, Ed., Academic Press, New York, 1974, pp. 125-143. [MR: 657977] [Zbl: 0337.65058] [Google Scholar]
  10. 10 M. CROUZEIX and P. RAVIART, Conforming and Nonconforming Finite Element Methods for Solving the Stationary Stokes Equations I, R. A. I. R. O. , Vol. R-3, 1973, pp 33-76. [EuDML: 193250] [MR: 343661] [Zbl: 0302.65087] [Google Scholar]
  11. 11 M. FORTIN, Analysis of the Convergence of Mixed Finite Element Methods, R.A.I.R.O.,Vol. 11, 1977, pp. 341-354. [EuDML: 193306] [MR: 464543] [Zbl: 0373.65055] [Google Scholar]
  12. 12 R. GLOWINSKI, Approximations externes, par elements finis deLagrange d'ordre un et deux, du probleme de Dinchlet pour l'operateur biharmonique Methodes iteratives de resolution des problemes approches In Topics in Numencal Analysis, J.J. .H MILLER, Ed., Academic Press, New York, 1973, pp. 123-171. [MR: 351120] [Zbl: 0277.35003] [Google Scholar]
  13. 13 P. GRISVARD, Singular Solutions of Elliptic Boundary Value Problems, Lecture Notes,University of Maryland (to appear). [Zbl: 0567.35025] [Google Scholar]
  14. 14 L. HERRMANN, Finite Element Bending Analysis for Plates, J. Eng Mech Div A. S.C. E. E. M5, Vol. 93, 1967, pp. 49-83. [Google Scholar]
  15. 15 L. HERRMANN, A Bending Analysis for Plates, Proc. Conf. On Matrix Methods in Structural Mechanics, AFFDL-TR-66-68, pp. 577-604. [Google Scholar]
  16. 16 C. JOHNSON, On the Convergence of a Mixed Finite Element Method for Plate Bending Problems, Numer Math , Vol. 21, 1973, pp. 43-62. [EuDML: 132212] [MR: 388807] [Zbl: 0264.65070] [Google Scholar]
  17. 17 R. KELLOGG and J. OSBORN, A regularity Result for the Stokes Problem, J Funct Anal., Vol. 21, 1976, pp. 397-431. [MR: 404849] [Zbl: 0317.35037] [Google Scholar]
  18. 18 B. MERCIER, Numerical Solution of the Biharmonic Problem by Mixed Finite Elements of Class $C$ , Bull. Un. Mat. Ital. , Vol. 10, 1974, pp. 133-149. [MR: 378442] [Zbl: 0332.65058] [Google Scholar]
  19. 19 T. MIYOSHI, Finite Element Method for the Solution of Fourth Order Partial Differential Equations, Kunamoto J. Sc. (Math.), Vol. 9, 1973, pp. 87-116. [MR: 386298] [Zbl: 0249.35007] [Google Scholar]
  20. 20 J. ODEN, Some Contributions to the Mathematical Theory of Mixed Finite Element Approximations In Theory and Practice in Finite Element Structural Analysis, University of Tokyo Press, 1973, pp. 3-23. [Zbl: 0374.65060] [Google Scholar]
  21. 21 R. RANNACHER, On Nonconforming and Mixed Finite Element Methods for Plate Bending Problems The Linear Case, R. A. I. R. O. , Vol. 13, 1979, pp. 369-387. [EuDML: 193348] [MR: 555385] [Zbl: 0425.35042] [Google Scholar]
  22. 22 P. RAVIART and J. THOMAS, A Mixed Finite Element Method for 2nd Order Elliptic Problems, Lecture Notes in math , No 606, Berlin-Heidelberg-New York, Springer, 1977, pp. 292-315. [MR: 483555] [Zbl: 0362.65089] [Google Scholar]
  23. 23 R. SCHOLZ, Approximation von Sattelpunkten mit finiten Elementen, Tagungsband, Bonn. Math. Schr., Vol.. 89, 1976, pp. 53-66. [MR: 471377] [Zbl: 0359.65096] [Google Scholar]
  24. 24 R. SCHOLZ, A Mixed Method for 4th Order Problems using Linear Finite Elements, R. A. I. R. O. , Vol. 12, 1978, pp. 85-90. [EuDML: 193314] [MR: 483557] [Zbl: 0382.65059] [Google Scholar]
  25. 25 J. THOMAS, Sur l'Analyse numérique des méthodes d'élements finis hybrides et mixtes, Thesis, Pierre-et-Marie-Curie, Paris, 1977. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you