Free Access
Issue
RAIRO. Anal. numér.
Volume 14, Number 3, 1980
Page(s) 291 - 308
DOI https://doi.org/10.1051/m2an/1980140302911
Published online 31 January 2017
  1. 1 E R ARANTES OLIVEIRA, Optimization of Finite Element Solutions, Proceedings of the 3rd Conference on Matrix Methods in Structural Mechanics, Wright Patterson Air Force Base, Ohio, 1971 [Google Scholar]
  2. 2 I BABUSKA et W RHEINBOLDT, Analysis of Optimal Finite Element in R1, Umversity ofMaryland, Technical note BN-869, 1978 [Google Scholar]
  3. 3 I BABUSKA et W RHEINBOLDT, Error Estimates for Adaptive Finite Element Computations, University of Maryland, Computer Science Technical Report BN-854, 1977, S I A M J Num Anal (a paraître) [MR: 483395] [Zbl: 0398.65069] [Google Scholar]
  4. 4 Ph CIARLET, The Finite Element Method for Elliptic Problems, North-Holland,Amsterdam, 1978 [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  5. 5 G McNEICE et P MARCAL, Optimization of Finite Element Grids Based on Minimum Potential Energy, J Engg for Industry, vol 95, serie B, n° 1, 1973, p 186-190 [Google Scholar]
  6. 6 A MAROCCO et O PIRONNEAU, Optimum Design with Lagrangian Finite Elements Design of an Electromagnet, Computer Methods in Applied Mechanics and Engineering, vol 15, 1978, p 277-308 [Google Scholar]
  7. 7 F MIGNOT,F MURAT et J P PUEL, Variation d'un point de retournement par rapport au domaine, Comm m P D E , 1979 (a paraître) [Zbl: 0422.35039] [Google Scholar]
  8. 8 F MURAT et J SIMON, Etude de problèmes d'optimal design, Proceedings of the 7th I F I P Conference, Nice, septembre 1975, Part 2, Lecture Notes in Computer Sciences, n° 41, Springer Verlag, 1976 [Zbl: 0334.49013] [Google Scholar]
  9. 9 F MURAT et J SIMON, Quelques résultats sur le contrôle par un domaine géométrique, Publications du Laboratoire d'Analyse numérique (L A n° 189), Université Pans-VI 1976 [Google Scholar]
  10. 10 P OLIVEIRA, Existence de maillages optimaux, R A I R O, Analyse numérique, vol 14, n° 3, 1980 [Google Scholar]
  11. 11 P OLIVEIRA, Maillages optimaux dans les méthodes d'éléments finis, Thèse de 3 cycle, Paris, 1979 [Zbl: 0447.65062] [Google Scholar]
  12. 12 W PRAGER, A Note on the Optimal Choice of Finite Element Grids, ComputerMethods in Applied Mechanics and Engineering, vol 6, 1975, p 363-366 [MR: 458944] [Zbl: 0323.73059] [Google Scholar]
  13. 13 L SCHWARTZ, Analyse mathématique, Cours professe a l'Ecole Polytechnique deParis, Hermann, Paris, 1967 [Zbl: 0171.01301] [Google Scholar]
  14. 14 J W TANG et D J TURCKE, Characteristic of Optimal Grids, Computer Methods inApplied Mechanics and Engineering, vol 11, 1977, p 31-37 [Google Scholar]
  15. 15 D J TURCKE et G M McNEICE, Guidelines for Selecting Finite Element Grids Based on an Optimization Study, Computer and Structures, vol 4, 1974, p 499-519 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you