Free Access
RAIRO. Anal. numér.
Volume 15, Number 1, 1981
Page(s) 41 - 78
Published online 31 January 2017
  1. 1. S. AGMON,A. DOUGLIS and L. NIRENBERG, Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions, Comm. Pure AppL Math., Vol. 12, 1959, pp. 623-727. [MR: 125307] [Zbl: 0093.10401] [Google Scholar]
  2. 2. G. A. BAKER,J. H. BRAMBLE and V. THOMÉE, Single Step Galerkin Approximations for Parabolic Problems, Math. Comp., Vol.31, 1977 pp. 818-847. [MR: 448947] [Zbl: 0378.65061] [Google Scholar]
  3. 3. J. H. BRAMBLE and J. OSBORN, Rate of Convergence Estimates for Non-Selfadjoint Eigenvalue Approximations, Math. Comp., Vol. 27, 1973, pp. 525-549. [MR: 366029] [Zbl: 0305.65064] [Google Scholar]
  4. 4. J. H. BRAMBLE,A. H. SCHATZ, V. THOMÉE and L. B. WAHLBIN, Some Convergence Estimates for Semidiscrete Galerkin Type Approximations for Parabolic Equations, S.I.A.M. J. Numer. Anal., Vol. 14, 1977, pp. 218-241. [MR: 448926] [Zbl: 0364.65084] [Google Scholar]
  5. 5. J. H. BRAMBLE and V. THOMÉE, Discrete Time Galerkin Methods for a Parabolic Boundary Value Problem, Annali di Matematica pura ed applicata, Vol. 101, 1974 pp. 115-152. [MR: 388805] [Zbl: 0306.65073] [Google Scholar]
  6. 6. F. BREZZI, On the Existence, Uniqueness and Approximation of Saddle-Point Problems Arising from Lagrangian Multipliers, R.A.I.R.O., Anal. Numér., Vol.2, 1974, pp. 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  7. 7. A. CALDERON and A. ZYGMUND, On theExistence of Certain Singuiar Integrals, Acta Math., Vol.88, 1952, pp. 85-139. [MR: 52553] [Zbl: 0047.10201] [Google Scholar]
  8. 8. G. DUVAUT and J. L. LIONS, Les inéquations en mécanique et enphysique, Dunod, Paris, 1972. [MR: 464857] [Zbl: 0298.73001] [Google Scholar]
  9. 9. R. FALK and J. OSBORN, Error Estimates for Mixed Methods, Technical report, The Mathematics Research Center, University of Wisconsin-Madison, 1979. [Zbl: 0467.65062] [MR: 592753] [Google Scholar]
  10. 10. C. JENSEN, A Mixed Finite Element Method with Curved Eléments, Technical report, Department of Computer Science, Chalmers University of Technology, 1979. [Google Scholar]
  11. 11. C. JOHNSON, A Mixed Finite Element Method for Navier-Stokes' Equatiom, R.A I. R.O., Anal. Numér., Vol. 12, 1978, pp. 335-348. [EuDML: 193328] [MR: 519017] [Zbl: 0399.76035] [Google Scholar]
  12. 12. C. JOHNSON and B. MERCIER, Some Equilibrium Finite Element Methods for Two-Dimensional Elasticity Problems, Numer. Math., Vol. 30, 1978, pp. 103-116. [EuDML: 132541] [MR: 483904] [Zbl: 0427.73072] [Google Scholar]
  13. 13. P. A. RAVIART and J. M. THOMAS, A Mixed Finite Element Method for 2nd Order Elliptic Problems, Proc. of the Symposium on the Mathematîcal Aspects of the Finite Element Method, Rome, December, 1975. [Zbl: 0362.65089] [Google Scholar]
  14. 14. R. SCHOLZ, $L_\infty $-Convergence of Saddle-Point Approximation for Second Order Problems,R.A.I.R.O., Anal. Numér., [EuDML: 193297] [Zbl: 0356.35026] [Google Scholar]
  15. 15. R. TEMAM, Navier-Stokes' Equations, North Holland. Amsterdam, 1977. [Zbl: 0383.35057] [Google Scholar]
  16. 16. J. M. THOMAS, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse, Université Pierre-et-Marie-Curie, Paris, 1977. [Google Scholar]
  17. 17. V. THOMÉE, Some Interior Estimates for Semidiscrete Galerkin Approximations for Parabolic Equations, Math. Comp., Vol.33, 1979, pp. 37-62. [MR: 514809] [Zbl: 0419.65073] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you