Free Access
Issue
RAIRO. Anal. numér.
Volume 15, Number 2, 1981
Page(s) 101 - 118
DOI https://doi.org/10.1051/m2an/1981150201011
Published online 31 January 2017
  1. 1 P M. ANSELONE, Collectively Compact Operator Approximation Theory to Integral Equations, Prentice Hall, Englewood Cliffs, N.J., 1971. [MR: 443383] [Zbl: 0228.47001]
  2. 2 K. BRANDT, Calculation of vibration frequencies by a hybrid element method based on a generalized complementary energy principle, Int. J num. Meth. Engng., v. 12, 1977, pp. 231-246. [Zbl: 0346.73054]
  3. 3. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O , R-2, 1974, pp 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047]
  4. 4 F. BREZZI, Sur la méthode des éléments finis hybrides pour le problème biharmonique, Num. Math. v 24, 1975, pp. 103-131. [EuDML: 132332] [MR: 391538] [Zbl: 0316.65029]
  5. 5. F BREZZI and L. D. MARINI, On the numerical solution of plate bending problems by hybrid methods, R.A.I.R.O., R-3, 1975, pp. 5-50. [EuDML: 193272] [Zbl: 0322.73048]
  6. 6 C CANUTO, Eigenvalue approximations by mixed methods, R.A.I.R.O. Anal Num., v. 12, 1978, pp. 27-50 [EuDML: 193309] [MR: 488712] [Zbl: 0434.65032]
  7. 7. C. CANUTO, A finite element to interpolate symmetric tensors with divergence in $L^2$ (To appear on Calcolo). [Zbl: 0508.65051]
  8. 8. P G CIARLET, The finite element method for elliptic problems, North-Holland, Amsterdam-New York-Oxford, 1978. [MR: 520174] [Zbl: 0383.65058]
  9. 9. G. FICHERA, Numerical and Quantitative Analysis, Pitman, London-San Francisco-Melbourne, 1978. [MR: 519677] [Zbl: 0384.65043]
  10. 10. P. GRISVARD, Singularité des solutions du problème de Stokes dans un polygone (To appear)
  11. 11 W. G. KOLATA, Eigenvalue approximation by the finite element method : the method of Lagrange multipliers (To appear) [MR: 514810] [Zbl: 0448.65067]
  12. 12 V. A. KONDRAT'EV, Boundary problems for elliptic equations in domains with conical or angular points, Trans Moscow Math Soc., v 16, 1976, pp 227-313. [Zbl: 0194.13405]
  13. 13. B. MERCIER and J. RAPPAZ, Eigenvalue approximation via nonconforming and hybrid finite elements methods, Rapport Interne du Centre de Mathématiques Appliquées de l'École Polytechnique, n° 33, 1978
  14. 14. B. MERCIER, J. OSBORN, J. RAPPAZ and P.-A. RAVIART, Eigenvalue approximation by mixed and hybrid methods (To appear). [MR: 606505] [Zbl: 0472.65080]
  15. 15. T. H. H. PIANG and P. TONG, The basis of finite element methods for solid continua, Int. J. num. Meth. Engng., v. 1, 1969, pp. 3-28. [Zbl: 0252.73052]
  16. 16. J. RAPPAZ, Approximation of the spectrum of a non-compact operator given by the magnetohydrodynamic stability of a plasma, Num. Math., v. 28, 1977, pp. 15-24. [EuDML: 132472] [MR: 474800] [Zbl: 0341.65044]
  17. 17. J. RAPPAZ, Spectral approximation by finite elements of a problem of MHD-stability of a plasma, The Mathematics of Finite Elements and Applications III, MAFELAP 1978 (Ed. J. R. Whiteman), Academic Press, London-New York-San Francisco, 1979, pp. 311-318. [MR: 559307] [Zbl: 0442.76087]
  18. 18. G. STRANG and G. FIX, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, N.J., 1973. [MR: 443377] [Zbl: 0356.65096]
  19. 19. B. TABARROK, A variational principle for the dynamic analysis of continua by hybrid finite element method, Int. J. Solids Struct., v. 7, 1971, pp. 251-268. [Zbl: 0228.73053]
  20. 20. R. A. TOUPIN, A variational principle for the mesh-type analysis of the mechanical system, Trans. Am. Soc. Mech. Engngs., v. 74, 1952, pp. 151-152. [MR: 51053] [Zbl: 0047.17710]
  21. 21. P. G. GILARDI (To appear).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you