Free Access
Issue
RAIRO. Anal. numér.
Volume 15, Number 2, 1981
Page(s) 171 - 176
DOI https://doi.org/10.1051/m2an/1981150201711
Published online 31 January 2017
  1. 1. J. H. BRAMBLE,J. NITSCHE and A. SCHATZ, Maximum-norm interior estimates for Ritz-Galerkin methods. Math Comp 29, 677-688 (1975). [MR: 398120] [Zbl: 0316.65023] [Google Scholar]
  2. 2. J. H. BRAMBLE,A. SCHATZ, V. THOMEE and L. B. WAHLBIN, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations. SIAM J Numer Anal 14, 218-241 (1977). [MR: 448926] [Zbl: 0364.65084] [Google Scholar]
  3. 3. J. JR. DOUGLAS,T. DUPONT and L. B. WAHLBIN, The stability in Lq of the L2-projection into finite element function spaces. Numer Math 23, 193-197 (1975). [EuDML: 132299] [MR: 388799] [Zbl: 0297.41022] [Google Scholar]
  4. 4. H.-P. HELFRICH, Fehlerabschatzungen fdr das Galerkinverfahren zur Losung von Evolutionsgleichungen. Manuscripta Math 13, 219-235 (1974). [EuDML: 154266] [MR: 356513] [Zbl: 0323.65037] [Google Scholar]
  5. 5. J. NITSCHE, Interior error estimates of projection methods. Proceedings Equadiff 3, Czechoslovak Conference on Differential Equations and their Applications, 235-239, Brno (1972). [EuDML: 221807] [MR: 359361] [Zbl: 0357.65090] [Google Scholar]
  6. 6. J. NITSCHE and A. SCHATZ, On local approximation properties of $L_2$-projection on spline-subspaces. Appl Anal 2, 161-168 (1972). [MR: 397268] [Zbl: 0239.41007] [Google Scholar]
  7. 7. J. NITSCHE and A. SCHATZ, Interior estimates for Ritz-Galerkin methods. Math Comp 28, 937-958 (1974). [MR: 373325] [Zbl: 0298.65071] [Google Scholar]
  8. 8. V. THOMEE, Some convergence results for Galerkin methods for parabolic boundary value problems. Proceedings of a Symposium on Mathematical Aspects of Finite Elements m Partial Differential Equations, Madison, Wisc , Apr 1-3, 1974, C de Boor ed , Academic Press, 55-88 (1974). [MR: 657811] [Zbl: 0343.65046] [Google Scholar]
  9. 9. V. THOMEE, Some interior estimates for semidiscrete Galerkin approximations for parabolic equations. Math Comp 33, 37-62 (1979). [MR: 514809] [Zbl: 0419.65073] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you