Free Access
RAIRO. Anal. numér.
Volume 15, Number 4, 1981
Page(s) 371 - 390
Published online 31 January 2017
  1. G. A. BAKER Jr., Essentials of Padé Approximants, Academic Press, Inc., NewYork, 1974. [Zbl: 0315.41014] [Google Scholar]
  2. A. S. CAVARETTA Jr.,A. SHARMA and R. S. VARGA, Interpolation in the roots of unity : an extension of a Theorem of I. L. Walsh, Resultate der Mathematik, 3 (1981), 155-191. [Zbl: 0447.30020] [Google Scholar]
  3. R. DE MONTESSUS DE BALLORE, > Sur les fractions continues algébriques, Bull. Soc. Math. France, 30 (1902), 28-36. [EuDML: 86033] [MR: 1504403] [JFM: 33.0227.01] [Google Scholar]
  4. O. PERRON, Die Lehre von den Kettenbrüchen, 3rd ed., B. G. Teubner, Stuttgart, 1957. [MR: 85349] [Zbl: 0077.06602] [Google Scholar]
  5. E. B. SAFF, An extension of Montessus de Ballore's Theorem on the convergence of interpolating rational functions, J. Approximation Theory, 6 (1972), 63-67. [MR: 352475] [Zbl: 0241.30013] [Google Scholar]
  6. V. I. SMIRNOV and N. A. LEBEDEV, Functions of a Complex Variable, Constructive Theory, Iliffe Books Ltd., London, 1968. [MR: 229803] [Zbl: 0164.37503] [Google Scholar]
  7. J. L. WALSH, The divergence of sequences of polynomials interpolating in roots of unity, Bull. Amer. Math. Soc, 42 (1936), 715-719. [Zbl: 0015.34602] [MR: 1563411] [JFM: 62.0332.01] [Google Scholar]
  8. J. L. WALSH, Interpolation and Approximation by Rational Functions in the Comple Domain, 5th éd., Colloq. Publ. Vol. 20, American Mathematical Society, Providence, R.I., 1969. [MR: 218588] [Zbl: 0106.28104] [Google Scholar]
  9. D. D. WARNER, An extension of Saffs Theorem on the convergence of interpolating rational functions, J. Approximation Theory, 18 (1976), 108-418. [MR: 432883] [Zbl: 0359.65006] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you