Free Access
Issue
RAIRO. Anal. numér.
Volume 16, Number 3, 1982
Page(s) 211 - 242
DOI https://doi.org/10.1051/m2an/1982160302111
Published online 31 January 2017
  1. Y BABUSKA et A K AZIZ, On the angle condition in the finite element method, Siam J Num Anal, Vol 13, n° 2 (1976) [MR: 455462] [Zbl: 0324.65046]
  2. M BERGER, Geometrie tome 3 convexes et polytopes, polyedres réguliers, aires et volumes, Fernand Nathan Paris (1978) [Zbl: 0423.51001]
  3. W BROSTAW,JP DUSSAULT et B L FOX, Construction of Vornot polyhedra, J Comp Phys 29 (1978), pp 81-92 [MR: 510461] [Zbl: 0392.73097]
  4. J CARNET, Une methode heuristique de maillage dans le plan pour la mise en oeuvre des elements finis, These Paris (1978)
  5. J C CAVENDISH, Automatic triangulation of arbitrary planar domains for the finite element method, Int J Num Meth Engng 8 (1974) pp 679-696 [Zbl: 0284.73045]
  6. P G CIARLET, The finite element method for elliptic problems, North-Holland (1978) [MR: 520174] [Zbl: 0383.65058]
  7. H S M COXETER,L FEW et C A ROGERS, Covering space with equal spheres, Mathematika 6(1959), pp 147-157 [MR: 124821] [Zbl: 0094.35301]
  8. B DELAUNAY, Sur la sphère vide, Bul Acad Sci URSS Class Sci Nat (1934), pp 793-800 [Zbl: 0010.41101]
  9. W F EDDY, A new convex hull algorithm for planar sets, ACM TMS, vol 3, n° 4 (1977), pp 398-403 [Zbl: 0374.68036]
  10. P J GREEN et R SIBSON, Computing Dirichlet tesselations in the plane, The Computer Journal, vol 21, n°2 (1977), pp 168-173 [MR: 485467] [Zbl: 0377.52001]
  11. F HERMELINE, Une methode automatique de maillage en dimension n, These Paris (1980)
  12. D T LEE, Two-dimensional Voronot diagrams in Lp-Metric, J of the ACM, vol 27, n° 4 (1980), pp 604-618 [MR: 594689] [Zbl: 0445.68053]
  13. S NORDBECK et B RYSTEDT, Computer cartography point in polygon programs, Bit, 7 (1967), pp 39-64 [Zbl: 0146.14902]
  14. C S PESKIN, Lagrangian method for the Navier-Stokes equations, Communication non publiée
  15. F P PREPARATA et S J HONG, Convex hull of finite sets of points in two and three dimension, Comm of the ACM, vol 20, n°2 (1977), p 87 [MR: 488985] [Zbl: 0342.68030]
  16. R SIBSON, Locally equiangular triangulations, Comp J , vol 21, n° 3 (1977), p 243 [MR: 507358]
  17. W C THACKER, A brief review of techniques for generating irregular computational grids, Int J Num Met Engng, vol 15 (1980), pp 1335-1341 [Zbl: 0438.76003]
  18. P F WATSON, Computing the n-dimensional Delaunay tesselation with application to Voronot polytopes, The Computer Journal, vol 24, n° 2 (1981) [MR: 619577]
  19. A BOWYER, Computing Dirichlet tesselations, The Computer Journal, vol 24, n° 2 (1981) [MR: 619576]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you