Free Access
RAIRO. Anal. numér.
Volume 16, Number 3, 1982
Page(s) 211 - 242
Published online 31 January 2017
  1. Y BABUSKA et A K AZIZ, On the angle condition in the finite element method, Siam J Num Anal, Vol 13, n° 2 (1976) [MR: 455462] [Zbl: 0324.65046] [Google Scholar]
  2. M BERGER, Geometrie tome 3 convexes et polytopes, polyedres réguliers, aires et volumes, Fernand Nathan Paris (1978) [Zbl: 0423.51001] [Google Scholar]
  3. W BROSTAW,JP DUSSAULT et B L FOX, Construction of Vornot polyhedra, J Comp Phys 29 (1978), pp 81-92 [MR: 510461] [Zbl: 0392.73097] [Google Scholar]
  4. J CARNET, Une methode heuristique de maillage dans le plan pour la mise en oeuvre des elements finis, These Paris (1978) [Google Scholar]
  5. J C CAVENDISH, Automatic triangulation of arbitrary planar domains for the finite element method, Int J Num Meth Engng 8 (1974) pp 679-696 [Zbl: 0284.73045] [Google Scholar]
  6. P G CIARLET, The finite element method for elliptic problems, North-Holland (1978) [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  7. H S M COXETER,L FEW et C A ROGERS, Covering space with equal spheres, Mathematika 6(1959), pp 147-157 [MR: 124821] [Zbl: 0094.35301] [Google Scholar]
  8. B DELAUNAY, Sur la sphère vide, Bul Acad Sci URSS Class Sci Nat (1934), pp 793-800 [Zbl: 0010.41101] [Google Scholar]
  9. W F EDDY, A new convex hull algorithm for planar sets, ACM TMS, vol 3, n° 4 (1977), pp 398-403 [Zbl: 0374.68036] [Google Scholar]
  10. P J GREEN et R SIBSON, Computing Dirichlet tesselations in the plane, The Computer Journal, vol 21, n°2 (1977), pp 168-173 [MR: 485467] [Zbl: 0377.52001] [Google Scholar]
  11. F HERMELINE, Une methode automatique de maillage en dimension n, These Paris (1980) [Google Scholar]
  12. D T LEE, Two-dimensional Voronot diagrams in Lp-Metric, J of the ACM, vol 27, n° 4 (1980), pp 604-618 [MR: 594689] [Zbl: 0445.68053] [Google Scholar]
  13. S NORDBECK et B RYSTEDT, Computer cartography point in polygon programs, Bit, 7 (1967), pp 39-64 [Zbl: 0146.14902] [Google Scholar]
  14. C S PESKIN, Lagrangian method for the Navier-Stokes equations, Communication non publiée [Google Scholar]
  15. F P PREPARATA et S J HONG, Convex hull of finite sets of points in two and three dimension, Comm of the ACM, vol 20, n°2 (1977), p 87 [MR: 488985] [Zbl: 0342.68030] [Google Scholar]
  16. R SIBSON, Locally equiangular triangulations, Comp J , vol 21, n° 3 (1977), p 243 [MR: 507358] [Google Scholar]
  17. W C THACKER, A brief review of techniques for generating irregular computational grids, Int J Num Met Engng, vol 15 (1980), pp 1335-1341 [Zbl: 0438.76003] [Google Scholar]
  18. P F WATSON, Computing the n-dimensional Delaunay tesselation with application to Voronot polytopes, The Computer Journal, vol 24, n° 2 (1981) [MR: 619577] [Google Scholar]
  19. A BOWYER, Computing Dirichlet tesselations, The Computer Journal, vol 24, n° 2 (1981) [MR: 619576] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you