Free Access
RAIRO. Anal. numér.
Volume 17, Number 1, 1983
Page(s) 93 - 109
Published online 31 January 2017
  1. 1. A. K. Aziz Mathematical foundations of the finite element method. New York, 1972. [Google Scholar]
  2. 2. C. L. LAWSON, R. J. HANSON, Solving least squares problems. Prentice-Hall, 1974. [MR: 366019] [Zbl: 0860.65028] [Google Scholar]
  3. 3. S. LOJASIEWICZ, Wstep do teorii funkcji rzeczywistych. PWN Warszawa, 1973. [Zbl: 0417.26003] [MR: 432826] [Google Scholar]
  4. 4. K. MOSZYNSKJ, On approximation of the spectral density function of a self adjoint operator. To appear in Studia Scientiarum Mathematicarum Hungarica, N° 14, 1979. [Zbl: 0439.47018] [Google Scholar]
  5. 5. K. MOSZYNSKI, Approximation of the spectrum of a bounded, normal operator with the help of its spectral density functions. Preprint N°249. Institute of Mathematics, Polish Academy of Sciences, Warsaw, oct. 1981. [Zbl: 0472.47004] [Google Scholar]
  6. 6. Sz. F. RIESZ, B. NAGY, Leçons d'analyse fonctionnelle. Akademiai Kiado. Budapest, 1952. [Zbl: 0122.11205] [Google Scholar]
  7. 7. T. J. RIVLIN, An introduction to the approximation of functions. Blaisdell Publ., 1969. [MR: 634509] [Zbl: 0189.06601] [Google Scholar]
  8. 8. A. SARD, Linear approximation. AMS 1963. [MR: 158203] [Zbl: 0115.05403] [Google Scholar]
  9. 9. A. H. STROUD, Approximate calculation of multiple intégrals. Prentice-Hall, 1971. [MR: 327006] [Zbl: 0379.65013] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you