Free Access
Issue
RAIRO. Anal. numér.
Volume 17, Number 2, 1983
Page(s) 195 - 208
DOI https://doi.org/10.1051/m2an/1983170201951
Published online 31 January 2017
  1. Sh. AGMON, Lectures on elliptic boundary value problems, Van Nostrand mathematical studies 2. D. Van Nostrand Company, Inc., New York-Toronto-London-Melbourne, 1965. [MR: 178246] [Zbl: 0142.37401] [Google Scholar]
  2. I. BABUŠKA, The finite element method for infinite domains, I. Math. Comput., 26 (1972), 1-11. [MR: 298969] [Zbl: 0257.35002] [Google Scholar]
  3. W. BRAKHAGE and P. WERNER, Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung, Arch. d. Math., XVI (1965), 325-329. [Zbl: 0132.33601] [Google Scholar]
  4. P. G. CIARLET, The finite element method for elliptic problems, North-Holland publishing company, Amsterdam-New York-Oxford, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  5. R. COURANT and D. HILBERT, Methods of mathematical physics, Vol.I, Interscience publishers, inc., New York, 1953. [MR: 65391] [Zbl: 0051.28802] [Google Scholar]
  6. D. M. EIDUS, Principle of limit absorption (Russian). Matem. Sb., 57 (99) (1962).English translation : Amer. Math. Soc. Transi. (2) 47 (1965), 157-191. [MR: 145187] [Zbl: 0149.30602] [Google Scholar]
  7. G. Fix and G. STRANG, Fourier Analysis of the finite element method in Ritz-Galerkin theory, Studies in Appl. Math. 48 (1969), 265-273. [MR: 258297] [Zbl: 0179.22501] [Google Scholar]
  8. D. GILBARG and N. S. TRUDINGER, Elliptic partial differential equations of second order, Springer-Verlag, Berlin-Heidelberg-New York, 1977. [MR: 473443] [Zbl: 0361.35003] [Google Scholar]
  9. D. GREENSPAN and P. WERNER, A numerical method for the exterior Dirichlet problem for the reduced wave equation, Arch. Rat. Mech. Anal., 23 (1966/67), 288-316. [MR: 238501] [Zbl: 0161.12701] [Google Scholar]
  10. G. HELLWIG, Partielle Differentialgleichungen, B. G. Teubner Verlagsgesells-chaft, Stuttgart, 1960. [MR: 114986] [Zbl: 0093.28601] [Google Scholar]
  11. W. JAGER, Zur Theorie der Schwingungsgleichung mit variablen Koeffizienten in Aussengebieten, Math. Z., 102 (1967), 62-88. [EuDML: 170860] [MR: 218755] [Zbl: 0162.16402] [Google Scholar]
  12. J. KADLEC, The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain (Russian), Czeshoslovak Math. J., vol. 89 (1964), 386-393. [EuDML: 12227] [MR: 170088] [Zbl: 0166.37703] [Google Scholar]
  13. T. KATO, Perturbation theory for linear operators, Springer-Verlag, Berlin-Heidelberg-New York, 1976. [MR: 407617] [Zbl: 0342.47009] [Google Scholar]
  14. R. KLEINMANN and W. WENDLAND, On Neumann's method for the exterior Neumann problem for the Helmholtz equation, J. Math. Anal. Appl., 57 (1) 1977, 170-202. [MR: 430513] [Zbl: 0351.35022] [Google Scholar]
  15. V. A. KONDRATEV, Boundary problems for elliptic équations in domains with conical or angular points, Transl. Moscow Math. Soc, 16 (1967), 227-313. [MR: 226187] [Zbl: 0194.13405] [Google Scholar]
  16. R. KUSSMAUL, Ein numerisches Verfahren zur Lösung des Neumannschen Aussen-problems fur die Helmholtzsche Schwingungsgleichung, Computing 4 (1969), 246-273. [MR: 245219] [Zbl: 0187.40203] [Google Scholar]
  17. R. KUSSMAUL and P. WERNER, Fehlerabschätzungen fur ein numerisches Verfahren zur Auflösung linearer Integralgleichungen mit schwachsingularen Kernen, Computing 3 (1968), 22-46. [MR: 237118] [Zbl: 0184.38803] [Google Scholar]
  18. R. LEIS, Zur Monotonie der Eigenwerte selbstadjungierter elliptischer Differentialgleichungen, Math. Z., 96 (1967), 26-32. [EuDML: 170663] [MR: 208198] [Zbl: 0143.14501] [Google Scholar]
  19. W. MAGNUS,F. OBERHETTINGER and R. P. SONI, Formulas and theorems for the special functions of mathematical physics, Springer-Verlag, Berlin-Heidelberg-New York, 1966. [MR: 232968] [Zbl: 0143.08502] [Google Scholar]
  20. R. S. PHILLIPS, On the exterior problem for the reduced wave equation, Proc. of symposia in pure mathematics vol. XXIII « Partial differential équations ». A.M.S., Providence, R. I., 1973. [MR: 338545] [Zbl: 0261.35022] [Google Scholar]
  21. C. RULAND, Ein Verfahren zur Lösung von $(\Delta +k^2)u=O$ in Aussengebieten mit Ecken, Applicable Anal, 7 (1978), 69-79. [MR: 474895] [Zbl: 0405.65061] [Google Scholar]
  22. M. H. SCHULTZ, L 2 -error bounds for the Rayleigh-Ritz-Galerkin Method, SIAM J. Numer. Anal., 8 (1971), 737-748. [MR: 298918] [Zbl: 0285.65070] [Google Scholar]
  23. G. STRANG and G. J. FIX, An analysis of the finite element method, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]
  24. V. VOGELSANG , Das Ausstrahlungsproblem für elliptische Differentialgleichungen in Gebieten mit unbeschranktem Rand, Math. Z., 144 (1975), 101-124. [EuDML: 172245] [MR: 427821] [Zbl: 0301.35029] [Google Scholar]
  25. P. WERNER, Über die Randwertprobleme der Helmholtzschen Schwingungsgleichung, Math. Z., 85 (1964), 226-240. [EuDML: 170297] [MR: 168914] [Zbl: 0151.16001] [Google Scholar]
  26. M. ZLAMAL, Curved elements in the finite element method I, SIAM J. Numer. Anal., 10 (1973), 229-240. [MR: 395263] [Zbl: 0285.65067] [Google Scholar]
  27. M. ZLAMAL, Curved éléments in the finite element method II, SIAM J. Numer. Anal., 11 (1974), 347-362. [MR: 343660] [Zbl: 0277.65064] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you