Free Access
RAIRO. Anal. numér.
Volume 17, Number 3, 1983
Page(s) 249 - 265
Published online 31 January 2017
  1. 1. J. DOUGLAS, Jr., Effective time-stepping methods for the numerical solution of nonlinear parabolic problems, The Mathematics of Finite Eléments and Applications III, MAFELAP 1978, J. R. Whiteman (éd.), Academic Press, 1979. [MR: 559305] [Zbl: 0435.65095] [Google Scholar]
  2. 2. J. DOUGLAS,T. DUPONT and P. PERCELL, A time-stepping method for Galerkin approximations for nonlinear parabolic équations, Numerical Analysis, Dundee 1977, Lecture Notes in Mathematics 630, Springer, 1978. [MR: 483542] [Zbl: 0381.65058] [Google Scholar]
  3. 3. J. DOUGLAS,T. DUPONT and R. E. EWING, Incomplete itération for time-stepping a nonlinear parabolic Galerkin method, SIAM J. Numer. Anal., 16, 1979, pp. 503-522. [MR: 530483] [Zbl: 0411.65064] [Google Scholar]
  4. 4. J. DOUGLAS,R. E. EWING and M. F. WHEELER, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Analyse numérique, 17, 1983, pp. 17-33. [EuDML: 193407] [MR: 695450] [Zbl: 0516.76094] [Google Scholar]
  5. 5. J. DOUGLAS,M. F. WHEELER, B. L. DARLOW and R. P. KENDALL, Self-adaptive finite element simulation of miscible displacement, to appear in SIAM J. Scientific and Statistical Computing. [Zbl: 0535.76115] [Google Scholar]
  6. 6. R. E. EWING and T. F. RUSSELL, Efficient time-stepping methods for miscible displacement problems in porous media, SIAM J. Numer. Anal., 19, 1982, pp. 1-67. [MR: 646594] [Zbl: 0498.76084] [Google Scholar]
  7. 7. R. E. EWING and M. F. WHEELER, Galerkin methods for miscible displacement problems in porous media, SIAM J. Numer. Anal., 17, 1980, pp. 351-365. [MR: 581482] [Zbl: 0458.76092] [Google Scholar]
  8. 8. C. JOHNSON and V. THOMÉE, Error estimates for some mixed finite element methods for parabolic problems, RAIRO Analyse numérique, 15, 1981, pp.41-78. [EuDML: 193370] [MR: 610597] [Zbl: 0476.65074] [Google Scholar]
  9. 9. D. W. PEACEMAN, Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement, oc. Pet. Eng. J. (1966), pp. 213-216. [Google Scholar]
  10. 10. D. W. PEACEMAN, Fundamentals of Numerical Reservoir Simulation, Elsevier, 1977 [Google Scholar]
  11. 11. P. A. RAVIART and J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics 606, Springer, 1977. [MR: 483555] [Zbl: 0362.65089] [Google Scholar]
  12. 12. T. F. RUSSELL, An incompletely iterated characteristic finite element method for a miscible displacement problem, Thesis, University of Chicago, June 1980. [Google Scholar]
  13. 13. A. H. SCHATZ,V. THOMÉE and L. WAHLBIN, Maximum norm stability and error estimates in parabolic finite element équations, Comm. Pure Appl. Math., 33, 1980, pp. 265-304. [MR: 562737] [Zbl: 0414.65066] [Google Scholar]
  14. 14. R. SCHOLZ, $L_\infty $-convergence of saddle-point approximations for second order problems, RAIRO Analyse numérique, 11, 1977, pp. 209-216. [EuDML: 193297] [MR: 448942] [Zbl: 0356.35026] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you