Free Access
Issue
RAIRO. Anal. numér.
Volume 17, Number 3, 1983
Page(s) 311 - 326
DOI https://doi.org/10.1051/m2an/1983170303111
Published online 31 January 2017
  1. S. BOCHNER and W.T. MARTIN, Severai complex variables, Princeton Univ. Press, Princeton (1948). [MR: 27863] [Zbl: 0041.05205] [Google Scholar]
  2. S. CERNEAU and E. SANCHEZ-PALENCIA, Sur les vitrations libres des corps élastiquesplongés dans les fluides, Jour. Méca., 15(1976), pp. 399-425. [MR: 428884] [Zbl: 0332.76058] [Google Scholar]
  3. T. KATO, Perturbation theory for linear operators, Springer, Berlin (1966). [Zbl: 0148.12601] [Google Scholar]
  4. K. KNOPP, Theory offunctions, Part II, Dover, New-York. [Google Scholar]
  5. R. KRESS, On the limiting behaviour of solutions to intégral équations associatedwith time harmonie wave équations for small frequencies, Math. Meth. Appl. Sci.7 (1979), pp. 89-100. [MR: 548408] [Zbl: 0418.35031] [Google Scholar]
  6. G. HACHEM, Sur les fréquences de diffusion(scattering) d'un corps élastique coupléavec l'air, Anna. Fac. Sci. Toulouse, 2 (1980), pp. 193-218. [EuDML: 73109] [MR: 614012] [Zbl: 0481.35070] [Google Scholar]
  7. P. LAX and R. PHILLIPS, Scattering theory, cad. Press, New-York (1967). [MR: 217440] [Zbl: 0186.16301] [Google Scholar]
  8. H. MORAND and R. OHAYON, Substructure variational analysis of the vibrations ofcoupled fluid-structure Systems. Finite element results, Int. J. for Num. Meth. inEngng., 14 (1979), pp. 741-755. [Zbl: 0402.73052] [Google Scholar]
  9. B. NICOLAS-VULLIERME, R. OHAYON, R. VALID, Vibrations harmoniques de struc-tures élastiques immergées dans unliquide, 81e session A.T.M.A., Paris (mai 1981), T. P.,O.N.E.R.A., n° 1981-40. [Google Scholar]
  10. R. OHAYON, R. VALID, True symmetrie formulations offree vibrations of fluid-structure interaction, Proc. Int.Conf. on Num. Meth. forCoupled Problems. Univ.of Swansea (sept. 1981) T.P., O.N.E.R.A., n° 1981-78. [Google Scholar]
  11. E. SANCHEZ-PALENCIA, Non homogeneous media and vibration theory, Lect. Notes Phys., 127, Springer, Berlin (1980). [Zbl: 0432.70002] [Google Scholar]
  12. V. I. SMIRNOV, A course ofhigher mathematics, vol. IV,Pergamon, Oxford (1964). [Google Scholar]
  13. S. STEINBERG, Meromorphic families of compact operators, Arch. Rat.Mech. Anal.,31 (1968), pp. 372-379. [MR: 233240] [Zbl: 0167.43002] [Google Scholar]
  14. T. C. Su, The effect ofviscosïty onfree vibrations of submerged fluid-fïlled sphericalshells, Jour. Sound Vibr., 77(1981), pp. 101-126. [Zbl: 0477.73051] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you