Free Access
Issue
RAIRO. Anal. numér.
Volume 18, Number 1, 1984
Page(s) 7 - 85
DOI https://doi.org/10.1051/m2an/1984180100071
Published online 31 January 2017
  1. A. AMBROSETTI and G. MANCINI, to appear. [Google Scholar]
  2. A. AMBROSETTI and G. MANCINI, Remarks on some free boundary problems, In Recent Contributions to Nonlinear Partial Differential Equations. H. Berestycki and H. Brézis éd. Pitman, London, 1981. [MR: 639743] [Zbl: 0477.35084] [Google Scholar]
  3. J. F. G. AUCHMUTY and R. BEALS, Variational solutions of some nonlinear free boundary problems, Arch. Rat. Mech. Anal. 43 (1971), pp. 255-271. [MR: 337260] [Zbl: 0225.49013] [Google Scholar]
  4. J. F. G. AUCHMUTY and T. B. BENJAMIN, Rearrangement existence proofs for vortex rings, In préparation. [Google Scholar]
  5. P. BENILAN and H. BREZIS, Nonlinear problems related to the Thomas-Fermi equation, à paraître [Zbl: 1150.35406] [Google Scholar]
  6. T. B. BENJAMIN, The alliance of practical and analytic insights into the nonlinear problems of fluid mechanics, in Applications of Methods of Functional Analysis to Problems of Mechanics, pp. 8-29. Lecture Notes in Math. N° 503. Springer-Verlag, New York, 1976. [MR: 671099] [Zbl: 0369.76048] [Google Scholar]
  7. H. BERESTYCKI, Thèse de Doctorat d'État ès-Sciences, Univ. P. et M. Curie (Paris VI), 1980. [Google Scholar]
  8. H. BERESTYCKI, Some free boundary problems in plasma physics and fluid mechanics, In Applications of Nonlinear Analysis to the Physical Sciences. H. Amann, N. Bazley and K. Kirchgassner ed. Pitman, London 1981. [MR: 659699] [Zbl: 0503.76127] [Google Scholar]
  9. H. BERESTYCKI, Quelques questions à la théorie des tourbillons stationnaires dans un fluide idéal, J. Math. Pures Appl., to appear. [Google Scholar]
  10. H. BERESTYCKI and H. BREZIS, Sur certains problèmes de frontière libre, Compte Rendus Acad. Se. Paris, série A, 283 (1976), pp. 1091-1094. [MR: 427812] [Zbl: 0342.35014] [Google Scholar]
  11. H. BERESTYCKI and H. BREZIS, On a free boundary problem arising in plasma physics, Nonlinear Analysis, 4 (1980), pp. 415-436. [MR: 574364] [Zbl: 0437.35032] [Google Scholar]
  12. H. BERESTYCKI and P. L. LIONS, A direct variational approach to the global theory of vortex rings in an ideal fluid, To appear. [Google Scholar]
  13. H. BERESTYCKI and C. STUART, Sur des méthodes itératives pour la résolution de certains problèmes de valeurs propres non linéaires, Note C.R.A.S., to appear. [Google Scholar]
  14. H. BERESTYCKI and C. STUART, Some itérative schemes for nonlinear eigenvalue problems, To appear. [Google Scholar]
  15. M. S. BERGER and L. E. FRAENKEL, Nonlinear desingularization in certain free-boundary problems, Comra. Math. Phys. 77 (1980), pp. 149-172. [MR: 589430] [Zbl: 0454.35087] [Google Scholar]
  16. N. BOURBAKI, Elément de Mathématiques : Livre VI, Intégration. Actualités Scient. Ind. Hermann, Paris 1963-67. [Google Scholar]
  17. H. BREZIS, Some variational problems of the Thomas-Fermi type, In Variational Inequalities. Cottle, Gianessi and Lions éd., J. Wiley and Sons, New York 1980. [MR: 578739] [Zbl: 0643.35108] [Google Scholar]
  18. H. BREZIS,R. BENGURIA and F. H. LIEB, The Thomas-Fermi Von Weizacker theory ofatoms and molécules, To appear in Comm. Math. Phys. [MR: 612246] [Zbl: 0478.49035] [Google Scholar]
  19. J. P. CHRISTIANSEN and N. J. ZABUSKY, Instability, coalescence and fission offinit e area vortex structures, J. Fluid Mech., 61 (1973), pp.219-243. [Zbl: 0266.76039] [Google Scholar]
  20. P. G. CIARLET, The Finite Element Method for Elliptic Problem. North-Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  21. P G CIARLET and P A RAVIAT, Maximum pnnciple and uniform convergence for the finite element method, Computer Methods in Applied Mechanics and Engineering, 2 (1973), pp 17-31 [MR: 375802] [Zbl: 0251.65069] [Google Scholar]
  22. L COLLATZ, Functional Analysis and Numencal Mathematics, Academic Press, New York, 1966 [MR: 205126] [Zbl: 0148.39002] [Google Scholar]
  23. G S DEEM and N J ZABUSKY, Vortex waves statwnary V-vortex waves , Phys Rev Letters, 40 (1978), pp 859-862 e [Google Scholar]
  24. M J ESTEBAN, Thèse de Doctorat de 3e Cycle, Univ P et M Curie (Paris VI), 1981 [Google Scholar]
  25. M J ESTEBAN and P L LIONS, To appear [Google Scholar]
  26. E FERNANDEZ CARA, Méthodes numériques pour des problèmes nonlinéaires apparaissant dans la théorie des tourbillons stationnaires d'un fluide idéal, Rapport de Recherche INRIA n° 39, October 1980 [Google Scholar]
  27. E, FERNANDEZ CARA, To appear [Google Scholar]
  28. L E FRAENKEL and M S BERGER, On the global theory of vortex rings inanidéal fluid, Acta Math 132 (1974), pp 13-51 [MR: 422916] [Zbl: 0282.76014] [Google Scholar]
  29. A FRIEDMAN and B TURKINGTON, Asymptotic estimates for an axisymmetric rotating fluid, J Functional Anal, to appear [MR: 578929] [Zbl: 0435.35014] [Google Scholar]
  30. B GIDAS,NI, WEI-MING and L NIREMBERG, Symmetry and related properties via the maximum principle, Comm Math Phys 68 (1979), pp 209-243 [MR: 544879] [Zbl: 0425.35020] [Google Scholar]
  31. R GLOWINSKI, Numencal Methods for Nonlinear Variational Problems, 2nd édition To appear [Zbl: 0536.65054] [Google Scholar]
  32. J W KITCHEN, Concerning the convergence of iterates tofixed points, Stud Math 27 (1966), pp 247-249 [EuDML: 217173] [MR: 200759] [Zbl: 0143.16601] [Google Scholar]
  33. H LAMB, Hydrodynamics (6th ed) Cambridge, 1932 [Zbl: 0828.01012] [JFM: 58.1298.04] [Google Scholar]
  34. L LICHTENSTEIN, Uber einige existenz probleme der Hydrodynamik, Math Z , 23 (1925), pp 89-154 [EuDML: 167852] [Zbl: 51.0658.01] [MR: 1544733] [JFM: 51.0658.01] [Google Scholar]
  35. L LICHTENSTEIN, Grundlagen der Hydrodynamik, Sprmger-Veriag, Berlin 1929 [Google Scholar]
  36. E H LIEB and B SIMON, The Thomas-Fermi theory of atoms, molecules and solids Advances in Math , 23 (1977), pp 22-116 1 3 [MR: 428944] [Zbl: 0938.81568] [Google Scholar]
  37. P L LIONS, Mimmization problems in $L^1(R^3)$ and applications to free boundary problems, To appear [Zbl: 0467.49028] [Google Scholar]
  38. P LIONS, Minimization problems in $L^1(R^3)$ , To appear [Zbl: 0464.49019] [Google Scholar]
  39. NI, WEI-MING, On the existence of global vortex rings, To appear [MR: 583638] [Zbl: 0457.76020] [Google Scholar]
  40. J NORBURY, Steady planar vortex pairs inan idéal fluid, Comm Pure Appl Math , 28 (1975), pp 679-700 [MR: 399645] [Zbl: 0338.76015] [Google Scholar]
  41. J NORBURY, A steady vortex ring close to Hill's spherical vortex, Proc Camb Phil Soc , 72 (1972), pp 253-284 [MR: 302044] [Zbl: 0256.76016] [Google Scholar]
  42. J NORBURY, A family of steady vortex rings, J Fluid Mech ,57 (1973), pp 417-431 [Zbl: 0254.76018] [Google Scholar]
  43. R T PIERREHUMBERT, A family of steady translating vortex pairs with distnbuted vorticity, J Fluid Mech, 99 (1980), pp 129-144 [Zbl: 0473.76034] [Google Scholar]
  44. J P PUEL, Sur un problème de valeur propre non linéaire et de frontière libre, Compte Rendus Ac Sc Paris, série A, 284 (1977), pp 861-863 [MR: 436755] [Zbl: 0362.35024] [Google Scholar]
  45. P G SAFFMAN, The velocity of vortex rings, Studies in Appl Math , 49 (1970), pp 371-379 [Zbl: 0224.76032] [Google Scholar]
  46. P G SAFFMAN, Dynamics of vorticity, J Fluid Mech , 106 (1981), pp 49-58 [Zbl: 0465.76020] [Google Scholar]
  47. P G SAFFMAN and J C SCHATZMAN, Properties of a vortex street of finite vortices, To appear [MR: 632900] [Zbl: 0484.76032] [Google Scholar]
  48. M. SERMANGE, Etude numérique des bifurcations et de la stabilité des solutions des équations de Grad-Shafranov. In IVe Colloque International sur les Méthodes de Calcul Scientifique et Technique, Versailles, 10-14 déc. 1974. [Zbl: 0441.76092] [Google Scholar]
  49. R. TEMAM, A nonlinear eigenvalue problem : the shape at equilibrium of a confined plasma, Arch. Rat. Mech. Anal., 60 (1975), pp. 51-73. [MR: 412637] [Zbl: 0328.35069] [Google Scholar]
  50. R. TEMAM, Remarks on a free boundary problem arising in plasma physics, Comm. P.D.E., 2 (1977), pp. 563-585. [MR: 602544] [Zbl: 0355.35023] [Google Scholar]
  51. B. TURKINGTON, Inviscid flows with vorticity, In Proceedings of the Montecatini Conference on Free Boundary Problems, June 1981. To appear. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you