Free Access
Issue
RAIRO. Anal. numér.
Volume 18, Number 1, 1984
Page(s) 7 - 85
DOI https://doi.org/10.1051/m2an/1984180100071
Published online 31 January 2017
  1. A. AMBROSETTI and G. MANCINI, to appear.
  2. A. AMBROSETTI and G. MANCINI, Remarks on some free boundary problems, In Recent Contributions to Nonlinear Partial Differential Equations. H. Berestycki and H. Brézis éd. Pitman, London, 1981. [MR: 639743] [Zbl: 0477.35084]
  3. J. F. G. AUCHMUTY and R. BEALS, Variational solutions of some nonlinear free boundary problems, Arch. Rat. Mech. Anal. 43 (1971), pp. 255-271. [MR: 337260] [Zbl: 0225.49013]
  4. J. F. G. AUCHMUTY and T. B. BENJAMIN, Rearrangement existence proofs for vortex rings, In préparation.
  5. P. BENILAN and H. BREZIS, Nonlinear problems related to the Thomas-Fermi equation, à paraître [Zbl: 1150.35406]
  6. T. B. BENJAMIN, The alliance of practical and analytic insights into the nonlinear problems of fluid mechanics, in Applications of Methods of Functional Analysis to Problems of Mechanics, pp. 8-29. Lecture Notes in Math. N° 503. Springer-Verlag, New York, 1976. [MR: 671099] [Zbl: 0369.76048]
  7. H. BERESTYCKI, Thèse de Doctorat d'État ès-Sciences, Univ. P. et M. Curie (Paris VI), 1980.
  8. H. BERESTYCKI, Some free boundary problems in plasma physics and fluid mechanics, In Applications of Nonlinear Analysis to the Physical Sciences. H. Amann, N. Bazley and K. Kirchgassner ed. Pitman, London 1981. [MR: 659699] [Zbl: 0503.76127]
  9. H. BERESTYCKI, Quelques questions à la théorie des tourbillons stationnaires dans un fluide idéal, J. Math. Pures Appl., to appear.
  10. H. BERESTYCKI and H. BREZIS, Sur certains problèmes de frontière libre, Compte Rendus Acad. Se. Paris, série A, 283 (1976), pp. 1091-1094. [MR: 427812] [Zbl: 0342.35014]
  11. H. BERESTYCKI and H. BREZIS, On a free boundary problem arising in plasma physics, Nonlinear Analysis, 4 (1980), pp. 415-436. [MR: 574364] [Zbl: 0437.35032]
  12. H. BERESTYCKI and P. L. LIONS, A direct variational approach to the global theory of vortex rings in an ideal fluid, To appear.
  13. H. BERESTYCKI and C. STUART, Sur des méthodes itératives pour la résolution de certains problèmes de valeurs propres non linéaires, Note C.R.A.S., to appear.
  14. H. BERESTYCKI and C. STUART, Some itérative schemes for nonlinear eigenvalue problems, To appear.
  15. M. S. BERGER and L. E. FRAENKEL, Nonlinear desingularization in certain free-boundary problems, Comra. Math. Phys. 77 (1980), pp. 149-172. [MR: 589430] [Zbl: 0454.35087]
  16. N. BOURBAKI, Elément de Mathématiques : Livre VI, Intégration. Actualités Scient. Ind. Hermann, Paris 1963-67.
  17. H. BREZIS, Some variational problems of the Thomas-Fermi type, In Variational Inequalities. Cottle, Gianessi and Lions éd., J. Wiley and Sons, New York 1980. [MR: 578739] [Zbl: 0643.35108]
  18. H. BREZIS,R. BENGURIA and F. H. LIEB, The Thomas-Fermi Von Weizacker theory ofatoms and molécules, To appear in Comm. Math. Phys. [MR: 612246] [Zbl: 0478.49035]
  19. J. P. CHRISTIANSEN and N. J. ZABUSKY, Instability, coalescence and fission offinit e area vortex structures, J. Fluid Mech., 61 (1973), pp.219-243. [Zbl: 0266.76039]
  20. P. G. CIARLET, The Finite Element Method for Elliptic Problem. North-Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058]
  21. P G CIARLET and P A RAVIAT, Maximum pnnciple and uniform convergence for the finite element method, Computer Methods in Applied Mechanics and Engineering, 2 (1973), pp 17-31 [MR: 375802] [Zbl: 0251.65069]
  22. L COLLATZ, Functional Analysis and Numencal Mathematics, Academic Press, New York, 1966 [MR: 205126] [Zbl: 0148.39002]
  23. G S DEEM and N J ZABUSKY, Vortex waves statwnary V-vortex waves , Phys Rev Letters, 40 (1978), pp 859-862 e
  24. M J ESTEBAN, Thèse de Doctorat de 3e Cycle, Univ P et M Curie (Paris VI), 1981
  25. M J ESTEBAN and P L LIONS, To appear
  26. E FERNANDEZ CARA, Méthodes numériques pour des problèmes nonlinéaires apparaissant dans la théorie des tourbillons stationnaires d'un fluide idéal, Rapport de Recherche INRIA n° 39, October 1980
  27. E, FERNANDEZ CARA, To appear
  28. L E FRAENKEL and M S BERGER, On the global theory of vortex rings inanidéal fluid, Acta Math 132 (1974), pp 13-51 [MR: 422916] [Zbl: 0282.76014]
  29. A FRIEDMAN and B TURKINGTON, Asymptotic estimates for an axisymmetric rotating fluid, J Functional Anal, to appear [MR: 578929] [Zbl: 0435.35014]
  30. B GIDAS,NI, WEI-MING and L NIREMBERG, Symmetry and related properties via the maximum principle, Comm Math Phys 68 (1979), pp 209-243 [MR: 544879] [Zbl: 0425.35020]
  31. R GLOWINSKI, Numencal Methods for Nonlinear Variational Problems, 2nd édition To appear [Zbl: 0536.65054]
  32. J W KITCHEN, Concerning the convergence of iterates tofixed points, Stud Math 27 (1966), pp 247-249 [EuDML: 217173] [MR: 200759] [Zbl: 0143.16601]
  33. H LAMB, Hydrodynamics (6th ed) Cambridge, 1932 [Zbl: 0828.01012] [JFM: 58.1298.04]
  34. L LICHTENSTEIN, Uber einige existenz probleme der Hydrodynamik, Math Z , 23 (1925), pp 89-154 [EuDML: 167852] [Zbl: 51.0658.01] [MR: 1544733] [JFM: 51.0658.01]
  35. L LICHTENSTEIN, Grundlagen der Hydrodynamik, Sprmger-Veriag, Berlin 1929
  36. E H LIEB and B SIMON, The Thomas-Fermi theory of atoms, molecules and solids Advances in Math , 23 (1977), pp 22-116 1 3 [MR: 428944] [Zbl: 0938.81568]
  37. P L LIONS, Mimmization problems in $L^1(R^3)$ and applications to free boundary problems, To appear [Zbl: 0467.49028]
  38. P LIONS, Minimization problems in $L^1(R^3)$ , To appear [Zbl: 0464.49019]
  39. NI, WEI-MING, On the existence of global vortex rings, To appear [MR: 583638] [Zbl: 0457.76020]
  40. J NORBURY, Steady planar vortex pairs inan idéal fluid, Comm Pure Appl Math , 28 (1975), pp 679-700 [MR: 399645] [Zbl: 0338.76015]
  41. J NORBURY, A steady vortex ring close to Hill's spherical vortex, Proc Camb Phil Soc , 72 (1972), pp 253-284 [MR: 302044] [Zbl: 0256.76016]
  42. J NORBURY, A family of steady vortex rings, J Fluid Mech ,57 (1973), pp 417-431 [Zbl: 0254.76018]
  43. R T PIERREHUMBERT, A family of steady translating vortex pairs with distnbuted vorticity, J Fluid Mech, 99 (1980), pp 129-144 [Zbl: 0473.76034]
  44. J P PUEL, Sur un problème de valeur propre non linéaire et de frontière libre, Compte Rendus Ac Sc Paris, série A, 284 (1977), pp 861-863 [MR: 436755] [Zbl: 0362.35024]
  45. P G SAFFMAN, The velocity of vortex rings, Studies in Appl Math , 49 (1970), pp 371-379 [Zbl: 0224.76032]
  46. P G SAFFMAN, Dynamics of vorticity, J Fluid Mech , 106 (1981), pp 49-58 [Zbl: 0465.76020]
  47. P G SAFFMAN and J C SCHATZMAN, Properties of a vortex street of finite vortices, To appear [MR: 632900] [Zbl: 0484.76032]
  48. M. SERMANGE, Etude numérique des bifurcations et de la stabilité des solutions des équations de Grad-Shafranov. In IVe Colloque International sur les Méthodes de Calcul Scientifique et Technique, Versailles, 10-14 déc. 1974. [Zbl: 0441.76092]
  49. R. TEMAM, A nonlinear eigenvalue problem : the shape at equilibrium of a confined plasma, Arch. Rat. Mech. Anal., 60 (1975), pp. 51-73. [MR: 412637] [Zbl: 0328.35069]
  50. R. TEMAM, Remarks on a free boundary problem arising in plasma physics, Comm. P.D.E., 2 (1977), pp. 563-585. [MR: 602544] [Zbl: 0355.35023]
  51. B. TURKINGTON, Inviscid flows with vorticity, In Proceedings of the Montecatini Conference on Free Boundary Problems, June 1981. To appear.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you