Free Access
RAIRO. Anal. numér.
Volume 18, Number 2, 1984
Page(s) 125 - 135
Published online 31 January 2017
  1. 1. M. AHUÉS,F. D'ALMEIDA and M. TELIAS, 1982a, On the Defect Correction Method with Applications to Iterative Refinement Techniques. Rapport de Recherche IMAG N° 324, USMG, Grenoble. [Zbl: 0502.65077] [Google Scholar]
  2. 2. M. AHUÉS,F. D'ALMEIDA and M. TELIAS, 1982b, Two Defect Correction Methods for the Eigenvalue Problem of Compact Operators in Banach Spaces. Submitted to Journal of Intégral Equations. [Zbl: 0502.65077] [Google Scholar]
  3. 3. M. AHUÉS,F. CHATELIN, F. D'ALMEIDA and M. TELIAS, 1983, Itérative Refinement Techniques for the Eigenvalue Problem of Compact Intégral Operators. Durham Symposium on Treatment of Integral Equations by Numerical Methods. C. H. T.Baker and G. F. Miller Eds. Academic Press, London. [MR: 716134] [Zbl: 0502.65077] [Google Scholar]
  4. 4. M. AHUÉS and M. TELIAS, 1982, Quasi-Newton Itérative Refinement Techniquesforthe Eigenvalue Problem of Compact Linear Operators. Rapport de RechercheIMAG N° 325, USMG, Grenoble. [Google Scholar]
  5. 5. K. E. ATKINSON, 1973, Iterative Variants of the Nyström Method for the Numerical Solution of Intégral Equations. Numer. Math. 22, pp. 17-31. [EuDML: 132250] [MR: 337038] [Zbl: 0267.65089] [Google Scholar]
  6. 6. H. BRAKHAGE, 1960, Uber die numerische Behandlung von Integralgleichungen nach der Quadra turforme Imethode. Numer. Math. 2, pp. 183-196. [EuDML: 131455] [MR: 129147] [Zbl: 0142.11903] [Google Scholar]
  7. 7. F. CHATELIN, 1983, Spectral Approximation of Linear Operators. Academic Press,New York (to appear). [MR: 716134] [Zbl: 0517.65036] [Google Scholar]
  8. 8. T. KATO, 1976, Perturbation Theory for Linear Operators. Springer Verlag, Berlin,New York. [MR: 407617] [Zbl: 0342.47009] [Google Scholar]
  9. 9. Lin QUN, 1982, Itérative Refinement of Finit e Element Approximations for EllipticProblems. RAIRO Numer. Anal. 16, pp. 39-47. [EuDML: 193389] [MR: 648744] [Zbl: 0481.65064] [Google Scholar]
  10. 10. H. STETTER, 1978, The Defect Correction Principle and Discretization Methods.Numer. Math. 29, pp. 425-443. [EuDML: 132530] [MR: 474803] [Zbl: 0362.65052] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you