Free Access
RAIRO. Anal. numér.
Volume 18, Number 2, 1984
Page(s) 183 - 205
Published online 31 January 2017
  1. D. AUBRY, J. C. HUJEUX, Special algorithms for elastoplastic consolidation with finite elements, Third International Conference on Numerical Methods in Geomechanics (Aachem), 2-6 April 1979. [Google Scholar]
  2. B. A. BOLEY, J. H. WEINER, Theory of Thermal Stresses, John Wiley and Sons, New York-London-Sydney, 1960. [MR: 112414] [Zbl: 0095.18407] [Google Scholar]
  3. J. R. BOOKER, A numerical method for the solution of Biot's consolidation theory, Quart. J. Mech. Appl. Math. 26, 1973, pp. 457-470. [Zbl: 0267.65085] [Google Scholar]
  4. S.-I. CHOU, C.-C. WANG, Estimates of error in finite element approximate solutions to problems in linear thermoelasticity, Part I, Computationally coupled numerical schemes. Arch. Rational Mech. Anal. 76, 1981, pp. 263-299. [MR: 636964] [Zbl: 0494.73071] [Google Scholar]
  5. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  6. T. DUPONT, L2-estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal. 10, 1973, pp. 880-889. [MR: 349045] [Zbl: 0239.65087] [Google Scholar]
  7. G. FICHERA, Uniqueness, existence and estimate of the solution in the dynamical problem of thermodiffusion in an elastic solid, Arch. Mech. (Arch. Mech. Stos.) 26, 1974, pp. 903-920. [MR: 369959] [Zbl: 0297.35015] [Google Scholar]
  8. C. JOHNSON, A finite element method for consolidation of clay, Research Report 77.05 R, Chalmers University of Technology, Göteborg, 1977. [Zbl: 0392.73091] [Google Scholar]
  9. J. NEDOMA, F. LEITNER, Solution of problems of streess and strain of fully saturated porous media (In Czech.) Staveb, Cas. 27, 1979, pp. 23-27. [Google Scholar]
  10. J. NEDOMA, The finite element solution of parabolic equations, Apl. Mat. 23, 1978, pp. 408-438. [EuDML: 15071] [MR: 508545] [Zbl: 0427.65075] [Google Scholar]
  11. J. NEDOMA, The finite element solution of elliptic and parabolic equations using simplical isoparametric elements, RAIRO Anal. Numér. 13, 1979, pp. 257-289. [EuDML: 193343] [MR: 543935] [Zbl: 0413.65080] [Google Scholar]
  12. M. ZLAMAL, The finite element method in domains with curved boundaries, Internat. J. Numer. Methods Engrg. 5, 1973, pp. 367-373. [MR: 395262] [Zbl: 0254.65073] [Google Scholar]
  13. M. ZLAMAL, Curved elements in the finite element method, II. SIAM J. Numer. Anal. 11, 1974, pp. 347-362. [MR: 343660] [Zbl: 0277.65064] [Google Scholar]
  14. M. ZLAMAL, Finite element methods for nonlinear parabolic equations, RAIRO Anal. Numér. 11, 1977, No. 1, pp. 93-107. [EuDML: 193290] [MR: 502073] [Zbl: 0385.65049] [Google Scholar]
  15. A. ZENISEK, Curved triangular finite Cm-elements, Apl. Mat. 23, 1978, pp. 346-377. [EuDML: 15064] [MR: 502072] [Zbl: 0404.35041] [Google Scholar]
  16. A. ZENISEK, The existence and uniqueness theorem in Biot's consolidation theory. (To appear in Apl. Mat. 29, 1984.) [EuDML: 15348] [MR: 747212] [Zbl: 0557.35005] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you