Free Access
Volume 19, Number 1, 1985
Page(s) 7 - 32
Published online 31 January 2017
  1. I BABUSKA and J E OSBORN, Generalized finite element methods their performance and their relation to mixed methods, SIAM J Numer Anal 20 (1983), 510-536 [MR: 701094] [Zbl: 0528.65046] [Google Scholar]
  2. I BABUSKA,J OSBORN and J PITKARANTA, Analysis of mixed methods using mesh dependent norms, Math Comput 35 (1980), 1039-1062 [MR: 583486] [Zbl: 0472.65083] [Google Scholar]
  3. A BENSOUSSON, J L LIONS, G PAPANICOLAU, Asymptotic Analysis of Periodic Structures, North-Holland, Amsterdam, 1978 [MR: 503330] [Zbl: 0404.35001] [Google Scholar]
  4. F BREZZI and P A RAVIART, Mixed finite element methods for 4th order elliptic equations, in Proc of the Royal Irish Academy Conference on Numerical Analysis, Academic Press, London, 1977 [MR: 657975] [Zbl: 0434.65085] [Google Scholar]
  5. P G CIARLET, The Finite Element Method for Elliptic Equations, North-Holland, Amsterdam, 1978 [Zbl: 0383.65058] [MR: 520174] [Google Scholar]
  6. J DOUGLAS and J E ROBERTS, Global estimates for mixed methods for second order elliptics, to appear in Math Comput [Zbl: 0624.65109] [Google Scholar]
  7. R S FALK and J E OSBORN, Error estimates for mixed methods, R A I R O Anal numer 14 (1980), 309-324 [EuDML: 193361] [MR: 592753] [Zbl: 0467.65062] [Google Scholar]
  8. B FRAEJIS DE VEUBEKE, Displacement and equilibrium models in the finite element method, in Stress Analysis, O C Zienkiewicz and G Holister, eds , Wiley, New York, 1965 [Google Scholar]
  9. K HELLAN, Analysis of elastic plates in flexure by a simplified finite element method, Acta Polytechnica Scandinavica, Ci 46, Trondheim, 1967 [Zbl: 0237.73046] [Google Scholar]
  10. L HERRMANN, Finite element bending analysis for plates, J Eng Mech Div ASCE, a 3, EM5 (1967), 49-83 [Google Scholar]
  11. P LASCAUX and P LESAINT, Some nonconforming finite elements for the plate bending problem, R A I R O Anal numer 9 (1975), 9-53 [EuDML: 193267] [MR: 423968] [Zbl: 0319.73042] [Google Scholar]
  12. C JOHNSON, On the convergence of a mixed finite element method for plate bending problems, Numer Math 21 (1973), 43-62 [EuDML: 132212] [MR: 388807] [Zbl: 0264.65070] [Google Scholar]
  13. L S D MORLEY, The triangular equilibrium element in the solution of plate bending problems, Aero Quart 19 (1968), 149-169 [Google Scholar]
  14. R RANNACHER, Nonconforming finite element methods for eigenvalue problems in linear plate theory, Numer Math 33 (1979), 23-42 [EuDML: 132626] [MR: 545740] [Zbl: 0394.65035] [Google Scholar]
  15. R RANNACHER, On nonconforming and mixed finite elements for plate bending problems The linear case R A I R O Anal numer 13 (1979), 369-387 [EuDML: 193348] [MR: 555385] [Zbl: 0425.35042] [Google Scholar]
  16. P A RAVIART and J M THOMAS, A mixed finite element method for second order elliptic problems in Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics 606, Springer-Verlag, Berlin, 1977 [MR: 483555] [Zbl: 0362.65089] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you