Free Access
Issue
ESAIM: M2AN
Volume 19, Number 1, 1985
Page(s) 65 - 87
DOI https://doi.org/10.1051/m2an/1985190100651
Published online 31 January 2017
  1. M S AGRANOVICH, Spectral properties of diffraction problems In The General Method of Natural Vibrations in Diffraction Theory (Russian) (N N Voitovic, K Z Katzenellenbaum and A N Sivov) Izdat Nauka Moscow 1977 [MR: 484012]
  2. D ARNOLD and W L WENDLAND On the asymptotic convergence of collocation methods Math Comp in print (1983) [MR: 717691] [Zbl: 0541.65075]
  3. J P AUBIN, Approximation of Elliptic Boundary-Value Problems Wiley-Interscience New York 1972 [MR: 478662] [Zbl: 0248.65063]
  4. I BABUSKA and A K Aziz, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A K Aziz ed ) pp 3-359, Academic Press, New York 1972 [MR: 347104] [Zbl: 0259.00014]
  5. T DUPONT and R SCOTT, Constructive polynomial approximation In « Recent Advances in Numerical Analysis » (C de Boor ed ), Proc at MRC Madison Wisconsin, May 1978 [Zbl: 0456.65003]
  6. G I ESKIN, Boundary Value Problems for Elliptic Pseudodifferential Equations Trans Math Mon Amer Math Soc Providence, Rhode Island 1981 1981 [MR: 623608] [Zbl: 0458.35002]
  7. J FREHSE and R RANNACHER Eine $L^1$-Fehlerabschatzung fur diskrete Grundlosungen in der Methode der finiten ElementeIn « Finite Elemente » Tagungsband Bonn Math Schr 89, 92-114 (1976) [MR: 471370] [Zbl: 0359.65093]
  8. L HORMANDER, Pseudo-differential operators and non-elliptic boundary problems Annals Math 83, 129-209 (1966) [MR: 233064] [Zbl: 0132.07402]
  9. L HORMANDER, Fourier intégral operators I Acta mathematica 127, 79-183 (1971) [MR: 388463] [Zbl: 0212.46601]
  10. G C HSIAO,P KOPP and W L WENDLAND, A Galerkin collocation method for some integral equations of the first kind Computing 25, 89-130 (1980) [MR: 620387] [Zbl: 0419.65088]
  11. G C HSIAO and W L WENDLAND, Afinite element method for some integral equations of the first kind J Math Anal Appl 58, 449-481 (1977) [MR: 461963] [Zbl: 0352.45016]
  12. G C HSIAO and W L WENDLAND The Aubin-Nitsche lemma for integral equations Journal of Integral Equations 3, 299-315 (1981) [MR: 634453] [Zbl: 0478.45004]
  13. G C HSIAO and W L WENDLAND Super-approximation for boundary integral methods In Advances in Computer Methods for Partial Differential Equations IV (ed R Vichnevetsky, R S Stepleman), pp 200-206, IMACS, Dept Comp Sc Rutgers Univ New Brunswick 1981
  14. E MARTENSEN Potentialtheorie B G Teubner Stuttgart 1968 [MR: 247116] [Zbl: 0174.42602]
  15. S G MICHLIN, Vorlesungen uber lineare Integralgleichungen Verl der Wiss Berlin 1962 [MR: 141959]
  16. F NATTERER, Uber die punktweise Konvergenz finiter Elemente Numer Math 25 67-77 (1975) [EuDML: 132361] [MR: 474884] [Zbl: 0331.65073]
  17. J C NEDELEC, Approximation des équations integrales en mecanique et en physique Lecture Notes, Centre de Math Appl Ecole Polytechnique, 91128 Palaiseau, France, 1977
  18. J C NEDELEC and J PLANCHARD, Une methode variationnelle d'elements finis pour la resolution numérique d un probleme exterieur des R3 Revue Franc Automatique, Inf Rech Oper R 3, 105-129 (1973) [EuDML: 193249] [MR: 424022] [Zbl: 0277.65074]
  19. J A NITSCHE , L$^\infty $-convergence of finite element approximation Second Conference on Finite Elements, Rennes, France, 1975 [MR: 568857] [Zbl: 0362.65088]
  20. P M PRENTER, Splines and Variational Methods John Wiley & Sons, New York 1975 [MR: 483270] [Zbl: 0344.65044]
  21. R RANNACHER, Punktweise Konvergenz der Methode der finiten Elemente beim Plattenproblem Manuscripta math 19, 401-416(1976) [EuDML: 154424] [MR: 423841] [Zbl: 0383.65061]
  22. J SARANEN and W L WENDLAND, One the asymptotic convergence of collocation methods with spline functions of even degree, to appear in Math Comp 1985 [MR: 790646] [Zbl: 0623.65145]
  23. A H SCHATZ and L B WAHLBIN, Maximum norm error estimates in the finite element method for Poisson equation on plane domains with corners Math Comp 32, 73-109 (1978) [MR: 502065] [Zbl: 0382.65058]
  24. R SCOTT Optimal $L^\infty $-estimates for the finite element method on irregular meshes Math Comp 30, 681-697 (1976) [MR: 436617] [Zbl: 0349.65060]
  25. E STEPHAN, Solution procedures for interface problems in acoustics and electro-magnetics In Theoretical Acoustics and Numerical Techniques (ed P Filippi), CISM Courses 277, Springer-Verlag, Wien, New York, 291-348 (1983) [MR: 762832] [Zbl: 0578.76078]
  26. E STEPHAN and W L WENDLAND, Remarks to Galerkin and least squares methods with finite elements for general elliptic problem Manuscripta Geodaetica 1, 93-123 (1976) and Springer Lecture Notes m Math 564, 461-471 (1976) [MR: 520343] [Zbl: 0353.65067]
  27. G STRANG, Approximation in the finite element method Num Math 19, (1972) [EuDML: 132133] [MR: 305547] [Zbl: 0221.65174]
  28. M TAYLOR, Pseudodifferential Operators Princeton Univ Press, Princeton N J 1981 [MR: 618463] [Zbl: 0453.47026]
  29. F TRÊVES, Pseudodifferential Operators Plenum Press New York, London 1980 [MR: 597144]
  30. W L WENDLAND, On applications and the convergence of boundary integral methods In Treatment of Integral Equations by Numerical Methods (ed T H Baker G F Miller), pp 463-476, Academic Press, London 1982 [MR: 755378] [Zbl: 0561.65085]
  31. W L WENDLAND Boundary element methods and their asymptotic convergence In Theoretical Acoustics and Numerical Techniques (ed P Filippi), CISM Courses 277 Springer-Verlag, Wien, New York, 135 216 (1983) [MR: 762829] [Zbl: 0618.65109]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you