Free Access
Issue
ESAIM: M2AN
Volume 19, Number 2, 1985
Page(s) 327 - 340
DOI https://doi.org/10.1051/m2an/1985190203271
Published online 31 January 2017
  1. M. ABRAMOWITZ and A. STEGUN, Handbook of Mathematical Functions, Dover Publications Inc., New York, 1970. [Zbl: 0171.38503] [Google Scholar]
  2. L. BERS, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley, New York, 1958. [MR: 96477] [Zbl: 0083.20501] [Google Scholar]
  3. A. V. BITSADZE, Equations of the Mixed Type, Macmillan, New York, 1964. [MR: 163078] [Zbl: 0111.29205] [Google Scholar]
  4. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  5. A. G. DEACON and S. OSHER, A Finite Element Method for a boundary value problem of mixed type, SIAM J. Numer. Anal., 16 (5) (1979), pp. 756-778. [MR: 543966] [Zbl: 0438.65093] [Google Scholar]
  6. C. FERRARI and F. G. TRICOMI, Transonic Aerodynamics, Academic Press, New York, 1968. [Zbl: 0177.55304] [Google Scholar]
  7. P. GERMAIN, BADER, Solutions Elémentaires de certaines Equations aux dérivées partielles du type mixte, Bull. Soc. Math. Fr. 81 (1953), pp. 145-174. [EuDML: 86866] [MR: 58834] [Zbl: 0051.07503] [Google Scholar]
  8. P. GRISVARD, Behaviour of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical solutions of Partial Differential Equations III. Synspade 1975, Bert Hubbord Ed., pp. 207-274. [MR: 466912] [Zbl: 0361.35022] [Google Scholar]
  9. T. KATO, Perturbation Theory for Linear Operators, Springer Verlag, New York, 1966. [MR: 203473] [Zbl: 0148.12601] [Google Scholar]
  10. V. A. KONDRATEV, Boundary problems for Elliptic Equations in Domains with conical or Angular points, Trans. Moscow. Math. Soc., Trudy, Vol. 16 (1967), (Russian), pp. 209-292. AMS Translations, 1968. [MR: 226187] [Zbl: 0194.13405] [Google Scholar]
  11. C. MORAWETZ, A uniqueness theorem for Frankl's problem, Comm. Pure Appl. Math., 7 (1954), pp. 697-703. [MR: 65791] [Zbl: 0056.31904] [Google Scholar]
  12. C. MORAWETZ, A weak solution for a system of equations of elliptic-hyperbolic type, Comm. Pure Appl. Math., 11 (1958), pp. 315-331. [MR: 96893] [Zbl: 0081.31201] [Google Scholar]
  13. C. MORAWETZ, Uniqueness for the analogue of the Neumann problem for Mixed Equations, The Michigan Math. J., 4 (1957), pp. 5-14. [MR: 85441] [Zbl: 0077.09602] [Google Scholar]
  14. S. NOCILLA, G. GEYMONAT; B. GABOTTI, Il profil alose ad arco di cerchio in flusso transonico continuo senzi incidenza, Annali di Mat. Pura ed applicat, 84 (1970), pp. 341-374. [Zbl: 0233.76126] [Google Scholar]
  15. S. OSHER, Boundary value problems for Equations of Mixed Type I, The Lavrentiev-Bitsadze Model, Comm. PDE, 2 (5) (1977), pp. 499-547. [MR: 492931] [Zbl: 0358.35055] [Google Scholar]
  16. V. PASHKOVISKII, A functional method of solving Tricomi Problem, Differencial'nye Uravneniya, 4 (1968), pp. 63-73 (Russian). [MR: 235297] [Zbl: 0233.35068] [Google Scholar]
  17. B. SPAIN and M. G. SMITH, Functions of Mathematical Physics, van Nostrand, London, 1970. [Zbl: 0186.37501] [Google Scholar]
  18. G. STRANG and G. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N. J., 1973. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]
  19. J. A. TRANGENSTEIN, A Finite Element Method for the Tricomi Problem in the elliptic region, SIAM J. Numer. Anal., 14 (1977), pp. 1066-1077. [MR: 471379] [Zbl: 0399.65079] [Google Scholar]
  20. J. A. TRANGENSTEIN, A Finite Element Method for the Tricomi Problem in the Elliptic Region, Thesis, Cornell University, Ithaca, N. Y. 1975. [Google Scholar]
  21. F. TREVES, Introduction to Pseudo-Differential Operators and Fourier Integral Operators, Vol. I, Plenum Press, NewYork, 1980. [Zbl: 0453.47027] [Google Scholar]
  22. S USPENSKII, Imbedding and Extension theorems for a class of functions, II, Sib. Math. J., 7 (1966), pp. 409-418 (Russian). [MR: 198223] [Google Scholar]
  23. M. VANNINATHAN and G. D. VEERAPPA GOWDA, Approximation of Tricomi. Problem with Neumann Boundary Condition, To appear. [MR: 757493] [Zbl: 0527.65077] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you