Free Access
Issue
ESAIM: M2AN
Volume 19, Number 4, 1985
Page(s) 519 - 557
DOI https://doi.org/10.1051/m2an/1985190405191
Published online 31 January 2017
  1. O. AXELSSON, Solution of linear Systems of équations : itérative methods. Sparse Matrix Techniques, V. A. Barker (editor), Lecture Notes in Mathematics 572, Springer Verlag, 1977. [MR: 448834] [Zbl: 0354.65021]
  2. I. BABUSKA, The finite element method with Lagrangian multipliers, Numer. Math., 20 (1973), pp. 179-192. [EuDML: 132183] [MR: 359352] [Zbl: 0258.65108]
  3. I. BABUSKA and A. K. AZIZ, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (editor), Academic Press, New York, 1972. [MR: 421106] [Zbl: 0268.65052]
  4. J. H. BRAMBLE, The Lagrange multiplier method for Dirichlet's Problem, Math.Comp., 37 (1981), pp. 1-11 [MR: 616356] [Zbl: 0477.65077]
  5. J. H. BRAMBLE and R. S. FALK, TWO mixed finite element methods for the simply supported plate problem, R.A.I.R.O., Analyse numérique, 17 (1983), pp. 337-384. [EuDML: 193421] [MR: 713765] [Zbl: 0536.73063]
  6. J . H . BRAMBLE and J. E. OSBORN, Rate of convergence estimates for non-selfadjoint eigenvalue approximations. Math. Comp.. 27 (1973). pp. 525-549 [MR: 366029] [Zbl: 0305.65064]
  7. J. H. BRAMBLE and J. E. PASCIAK, A new computational approach for the linearized scalar potential formulation of the magnetostatic field problem, EEE Transactions on Magnetics, Vol Mag-18, (1982), pp. 357-361.
  8. J. H. BRAMBLE and L. R. SCOTT, Simultaneous approximation in scales of Banach spaces, Math. Comp., 32 (1978), pp.947-954. [MR: 501990] [Zbl: 0404.41005]
  9. P. G. CIARLET and P.A. RAVIART, A mixed finite element method for the biharmonic equation, Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DeBoor, Ed., Academic Press, New York, 1974, pp. 125-143. [MR: 657977] [Zbl: 0337.65058]
  10. P. G. CIARLET and R. GLOWINSKI, Dual itérative techniques for solving a finite element approximation of the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 5 (1975), pp.277-295. [MR: 373321] [Zbl: 0305.65068]
  11. R. S., FALK, Approximation of the biharmonic equation by a mixed finite element method, SIAM J. Numer. Anal., 15 (1978), pp.556-567. [MR: 478665] [Zbl: 0383.65059]
  12. R. GLOWINSKI and O. PIRONNEAU, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Review, 21 (1979), pp. 167-212. [MR: 524511] [Zbl: 0427.65073]
  13. J. L. LIONS and E. MAGENES, Problèmes Aux Limites non Homogènes et Applications, Vol 1, Dunod, Paris, 1968. [MR: 247243] [Zbl: 0165.10801]
  14. M. SCHECHTER, On $L^p$ estimates andregularity II, Math. Scand., 13 (1963), pp. 47- [EuDML: 165850] [MR: 188616] [Zbl: 0131.09505]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you