Free Access
Issue
ESAIM: M2AN
Volume 19, Number 4, 1985
Page(s) 671 - 685
DOI https://doi.org/10.1051/m2an/1985190406711
Published online 31 January 2017
  1. I. KOREC, On a problem of V. Ptak, Cas. pro pest. mat. 103 (1978), 365-379. [EuDML: 19618] [MR: 512233] [Zbl: 0429.26001] [Google Scholar]
  2. J. KRIŽKOVÁ, P. VRBOVÁ, A remark on a factorization theorem, Comm. Math. Univ. Carol (CMUC) 15 (1974), 611-614. [EuDML: 16651] [MR: 361789] [Zbl: 0329.46055] [Google Scholar]
  3. J. M. ORTEGA, W. C. RHEINBOLDT, Itérative solution of nonlinear équations in serval variables, Academic Press, London, 1970. [MR: 273810] [Zbl: 0241.65046] [Google Scholar]
  4. H. PETZELTOVÁ, P. VRBOVÁ, An overrelaxed modification of Newton's method, Revue Roumaine des Mathématiques 22 (1977), 959-963. [MR: 478203] [Zbl: 0379.65029] [Google Scholar]
  5. H. PETZELTOVÁ, P. VRBOVÁ, A remark on small divisors problems, Czech. Math. J. 103 (1978), 1-12. [EuDML: 13040] [MR: 482803] [Zbl: 0419.47029] [Google Scholar]
  6. F. A. POTRA, On a modified secant method, Math. Rev. Anal. Numer. Theor. Approximation, Anal. Numer. Theor. Approximation, 8,2 (1979), 203-214. [MR: 573981] [Zbl: 0445.65055] [Google Scholar]
  7. F. A. POTRA, An application of the induction method of V. Pták to the study of Régula Falsi, Aplikace Matematiky 26 (1981), 111-120. [EuDML: 15187] [MR: 612668] [Zbl: 0486.65038] [Google Scholar]
  8. F. A. POTRA, The rate of convergence of a modified Newton's process, Aplikace matematiky 26 (1981), 13-17. [EuDML: 15176] [MR: 602398] [Zbl: 0486.65039] [Google Scholar]
  9. F. A. POTRA, An error analysis for the secant method, Numer. Math. 38 (1982), 427-445. [EuDML: 132773] [MR: 654108] [Zbl: 0465.65033] [Google Scholar]
  10. F. A. POTRA, V. PTÁK, Nondiscrete induction and a double step sécant method, Math. Scand. 46 (1980), 236-250. [EuDML: 166704] [MR: 591604] [Zbl: 0423.65034] [Google Scholar]
  11. F. A. POTRA, V. PTÁK, On a class of modified Newton processes, Numer. Funct. Anal, and Optimiz. 2 (1980), 107-120. [MR: 580387] [Zbl: 0472.65049] [Google Scholar]
  12. F. A. POTRA, V. PTÁK, Sharp error bounds for Newton's process, Numer. Math. 34 (1980), 63-72. [EuDML: 132659] [MR: 560794] [Zbl: 0434.65034] [Google Scholar]
  13. F. A. POTRA, V. PTÁK : A generalization of Régula Falsi, Numer. Math. 36 (1981), 333-346. [EuDML: 132706] [MR: 613073] [Zbl: 0478.65039] [Google Scholar]
  14. F. A. POTRA, V. PTÁK : Nondiscrete induction and an inversion free modification of Newtons method, Cas. pro pest. mat. 108, 4 (1983), 333-341. [EuDML: 21543] [MR: 727533] [Zbl: 0563.65040] [Google Scholar]
  15. F. A. POTRA, V. PTÁK : Nondiscrete induction and itérative processes, Pitman Advanced Publishing Program, London, 1984. [MR: 754338] [Zbl: 0549.41001] [Google Scholar]
  16. V. PTÁK : Some metric aspects of the open mapping theorem, Math. Ann. 165 (1966), 95-104. [EuDML: 161355] [MR: 192316] [Zbl: 0138.37602] [Google Scholar]
  17. V. PTÁK : A quantitative refinement of the closed graph theorem, Czech. Math. J. 99 (1974), 503-506. [EuDML: 12814] [MR: 348431] [Zbl: 0315.46007] [Google Scholar]
  18. V. PTÁK : A theorem of the closed graph type, Manuscripta Math. 13 (1974), 109-130. [EuDML: 154258] [MR: 348430] [Zbl: 0286.46008] [Google Scholar]
  19. V. PTÁK : Deux théorèmes de factorisation, Comptes Rendus, Acad. Sci. Paris 278 (1974), 1091-1094. [MR: 341096] [Zbl: 0277.46047] [Google Scholar]
  20. V. PTÁK : Concerning the rate of convergence of Newton'sprocess, Comm. Math. Univ. Carolinae 16 (1975), 599-705. [EuDML: 16719] [MR: 398092] [Zbl: 0314.65023] [Google Scholar]
  21. V. PTÁK, A modification of Newtons method, Cas. pest mat. 101 (1976), 188-194. [EuDML: 21271] [MR: 443326] [Google Scholar]
  22. V. PTÁK, Nondiscrete mathematical induction and itérative existence proofs, Linear Algebra and its Applications 13 (1976), 223-236. [MR: 394119] [Zbl: 0323.46005] [Google Scholar]
  23. V. PTÁK, The rate of convergence of Newton's process, Numer. Math. 25 (1976), 279-285. [EuDML: 132380] [MR: 478587] [Zbl: 0304.65037] [Google Scholar]
  24. V. PTÁK, Nondiscrete mathematical induction, in : General Topology and its Relations to Modem Analysis and Algebra IV, 166-178, Lecture Notes in Mathematics 609, Springer Verlag, 1977. [EuDML: 221745] [MR: 487618] [Zbl: 0367.46007] [Google Scholar]
  25. V. PTÁK, What should be a rate of convergence, R.A.I.R.O., Analyse Numérique 11 (1977), 279-286. [MR: 474799] [Zbl: 0378.65031] [Google Scholar]
  26. V. PTÁK, Stability of exactness, Comm. Math. (Poznan) 21 (1978), 343-348. [Google Scholar]
  27. V. PTÁK, A rate of convergence, Numer. Funct. Anal, and Optimiz. 1 (1979), 255-271. [MR: 537831] [Zbl: 0441.46010] [Google Scholar]
  28. V. PTÁK, Factorization in Banach algebras, Studia Math. 65 (1979), 279-285. [EuDML: 218256] [MR: 567080] [Zbl: 0342.46036] [Google Scholar]
  29. J. W. SCHMIDT, H. LEONHARDT, Eeingrenzung von Lösungen mit Hüfe der Régula falsi, Computing 6 (1970). 318-329. [MR: 286275] [Zbl: 0231.65053] [Google Scholar]
  30. J. ZEMÁNEK, A remark on transitivity of operator algebras, CAS. PEST. MAT. 100 (1975), 176-178. [EuDML: 19594] [Zbl: 0302.46044] [MR: 380436] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you