Free Access
Issue
ESAIM: M2AN
Volume 20, Number 2, 1986
Page(s) 355 - 368
DOI https://doi.org/10.1051/m2an/1986200203551
Published online 31 January 2017
  1. D ARONSON, L CAFFARELLI, S KAMIN, How an initially stationary interface begins to move in porous medium flow, SIAM J Math Anal 14, 4 (1983), pp 639-658 [MR: 704481] [Zbl: 0542.76119] [Google Scholar]
  2. C BAIOCCHI, Estimations d erreur dans $L^\infty $ pour les inéquations a obstacle, Mathematical Aspects of F E M , Lectures Notes m Math 606, Springer (1977), pp 27-34 [MR: 488847] [Zbl: 0374.65053] [Google Scholar]
  3. C BAIOCCHI, G POZZI, Error estimates and free-boundary convergence for a finite difference discretization of a parabolic variational inequality, RAIRO Numer Anal 11, 4 (1977), pp 315-340 [EuDML: 193305] [MR: 464607] [Zbl: 0371.65020] [Google Scholar]
  4. H BREZIS, Seuil de régulante pour certains problèmes unilatéraux, C R Acad Sci Paris 273 (1971), pp 35-37 [MR: 287366] [Zbl: 0214.10703] [Google Scholar]
  5. H BREZIS, D KINDERLEHRER, The smoothness of solutions to nonlinear variational inequahties Indiana Univ Math J 23, 9 (1974), pp 831-844 [MR: 361436] [Zbl: 0278.49011] [Google Scholar]
  6. F BREZZI, L CAFFARELLI, Convergence of the discrete free boundaries for finite element approximations, RAIRO Numer Anal 17 (1983), pp 385-395 [EuDML: 193422] [MR: 713766] [Zbl: 0547.65081] [Google Scholar]
  7. F BREZZI, W HAGER, P RAVIART, Error estimates for the finite element solution of variational inequahties Part I Primal Theory, Numer Math 28 (1977), pp 431-443 [EuDML: 132496] [MR: 448949] [Zbl: 0369.65030] [Google Scholar]
  8. F BREZZI, W HAGER, P RAVIART, Error estimates for the finite element solution of variational inequalities Part II Mixed Methods, Numer Math 31 (1978), pp 1-16 [EuDML: 132563] [MR: 508584] [Zbl: 0427.65077] [Google Scholar]
  9. F BREZZI, G SACCHI, A finite element approximation of a variational inequality related to hydraulics, Calcolo 13, III (1976), pp. 257-274 [MR: 520171] [Zbl: 0353.76068] [Google Scholar]
  10. L CAFFARELLI, A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets, Boll U M I (1981), pp. 109-113 [MR: 607212] [Zbl: 0453.35085] [Google Scholar]
  11. L CAFFARELLI, L EVANS, Continuity of the temperature in the two-phase Stefan problems Arch Rational Mech Anal 81, 3 (1983), pp 199-220 [MR: 683353] [Zbl: 0516.35080] [Google Scholar]
  12. L CAFFARELLI, A FRIEDMAN, Regularity of the free boundary for the one dimensional flow of gas in a porous medium, Amer J Math (1979), pp 1193-1218 [MR: 548877] [Zbl: 0439.76084] [Google Scholar]
  13. L CAFFARELLI, A FRIEDMAN, Regularity of the free boundary of a gas flow in an n-dimensional porous medium, Indiana Univ Math J 29 (1980), pp 361-391 [MR: 570687] [Zbl: 0439.76085] [Google Scholar]
  14. L CAFFARELLI, N RIVIÈRE, Asymptotic behavior of free boundaries at their singular points, Ann Math 106 (1977), pp 309-317 [MR: 463690] [Zbl: 0364.35041] [Google Scholar]
  15. P CIARLET, The finite element method for elliptic problems, North-Holland (1978) [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  16. P CIARLET, P RAVIART, Maximum principle and uniform convergence for the finite element method, Comput Methods Appl Mech Engrg 2 (1973), pp 17-31 [MR: 375802] [Zbl: 0251.65069] [Google Scholar]
  17. A DAMLAMIAN, Some results in the multiphase Stefan problem, Comm Partial Differential Equations 2, 10 (1977), pp 1017-1044 [MR: 487015] [Zbl: 0399.35054] [Google Scholar]
  18. E DI BENEDETTO, Continuity of weak-solutions to certain singular parabolic equations Ann Mat Pura Appl IV, 130 (1982), pp 131-176 [MR: 663969] [Zbl: 0503.35018] [Google Scholar]
  19. A boundary modulus of continuity for a class of singular parabolic equations (to appear) [Zbl: 0606.35044] [Google Scholar]
  20. A FRIEDMAN,, The Stefan problem in several space variables, Trans Amer Math Soc 133 (1968), pp 51-87 [MR: 227625] [Zbl: 0162.41903] [Google Scholar]
  21. A FRIEDMAN, Variational Principles and Free-Boundary Problems, John Wiley & Sons (1982) [MR: 679313] [Zbl: 0564.49002] [Google Scholar]
  22. L JEROME, M ROSE, Error estimetes for the multidimensional two-phase Stefan problem, Math Comp 39, 160 (1982), pp 377-414 [MR: 669635] [Zbl: 0505.65060] [Google Scholar]
  23. B KNERR, The porous medium equation in one dimension, Trans Amer Math Soc 234 (1977), pp 381-415 [MR: 492856] [Zbl: 0365.35030] [Google Scholar]
  24. M NIEZGODKA, I PAWLOW, A generalized Stefan problem in several space variables Appl Math Optim 9 (1983), pp 193-224 [MR: 687720] [Zbl: 0519.35079] [Google Scholar]
  25. J NITSCHE, $L_\infty $-convergence of finite element approximations, Mathematical Aspects of F E M, Lectures Notes m Math 606, Springer (1977), pp 261-274 [MR: 488848] [Zbl: 0362.65088] [Google Scholar]
  26. R NOCHETTO, Error estimates for two-phase Stefan problems in several space variables, I linear boundary conditions, II non-linear flux conditions (to appear in Calcolo) [MR: 859087] [Zbl: 0606.65084] [Google Scholar]
  27. R NOCHETTO, Error estimates for multidimensional Stefan problems with general boundary conditions Free boundary problems applications and theory, Vol III (A Bossavitera/ eds ), Res Notes Math 120, Pitman (1985), pp 50-60 [MR: 863161] [Zbl: 0593.35094] [Google Scholar]
  28. R NOCHETTO, A class of non-degenerate two-phase Stefan problems in several space variables, Pubblicazione N° 442 del I A N di Pavia (1984) (to appear in Comm Partial Differential Equations) [MR: 869101] [Zbl: 0624.35085] [Google Scholar]
  29. P PIETRA, C VERDI, Convergence of the approximate free-boundary for the multidimensional one-phase Stefan problem, Pubblicazione N° 440 del I A N di Pavia (1984) (to appear in Comp Mech Int J ) [Zbl: 0622.65126] [Google Scholar]
  30. R RANNACHER, R SCOTT, Some optimal error estimates for piecewise linear finite element approximations Math Comp 38, 158 (1982), pp 437-445 [MR: 645661] [Zbl: 0483.65007] [Google Scholar]
  31. M ROSE, Numerical methods for flows through porous media I, Math Comp 40, 162 (1983), pp 435-467 [MR: 689465] [Zbl: 0518.76078] [Google Scholar]
  32. A VISINTIN, Sur le problème de Stefan avec flux non lineaire, Boll U M I , Anal Funz e Appl, V, 18 C, 1 (1981), pp 63-86 [MR: 631569] [Zbl: 0471.35078] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you