Free Access
Issue
ESAIM: M2AN
Volume 20, Number 3, 1986
Page(s) 461 - 477
DOI https://doi.org/10.1051/m2an/1986200304611
Published online 31 January 2017
  1. R. A. ADAMS, Sobolev SpacesSobolev Spaces, Academic Press, New York, 1975. [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
  2. K. BABA and M. TABATA, On a conservative upwind finite element scheme forconvective diffusion equations, RAIRO Anal. Numér. 1515 (1981), 3-25. [EuDML: 193369] [MR: 610595] [Zbl: 0466.76090] [Google Scholar]
  3. P. G. CIARLET, Discrete maximum principle for finite-difference operators, Aequationes Math. 44 (1970), 338-352. [EuDML: 136095] [MR: 292317] [Zbl: 0198.14601] [Google Scholar]
  4. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  5. P. G. CIARLET and P. A. RAVIART, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2 (1973), 17-31. [MR: 375802] [Zbl: 0251.65069] [Google Scholar]
  6. D. S. COHEN, Generalized radiation cooling of a convex solid, J. Math. Anal. Appl. 35 (1971), 503-511. [MR: 284092] [Zbl: 0218.35036] [Google Scholar]
  7. A. FRIEDMAN, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, New Jersey, 1964. [MR: 181836] [Zbl: 0144.34903] [Google Scholar]
  8. H. FUJII, Some remarks on finite element analysis of time-dependent field problems, Theory and Practice in Finite Element Structural Analysis (ed. by Yamada, and Gallagher, R. H.), 91-106, Univ. of Tokyo Press, Tokyo, 1973. [Zbl: 0373.65047] [Google Scholar]
  9. K.On finite element schemes of the Dirichlet problem for a System of ISHIHARA, On finite element schemes of the Dirichlet problem for a system of nonlinear elliptic equations, Numer. Funct. Anal. Optim. 3 (1981), 105-136. [MR: 619817] [Zbl: 0469.65071] [Google Scholar]
  10. K. ISHIHARA, Finite element approximations applied to the nonlinear boundary value problem $\Delta (u)=b(u)^2$ , Publ. Res. Inst. Math. Sci. 18 (1982), 17-34. [MR: 660820] [Zbl: 0492.65062] [Google Scholar]
  11. K. ISHIHARA, Monotone explicit iterations of the finite element approximations for the nonlinear boundary value problem, Numer. Math. 43 (1984), 419-437. [EuDML: 132911] [MR: 738386] [Zbl: 0531.65061] [Google Scholar]
  12. K. ISHIHARA, Explicit iterations with monotonicity for finite element approximations applied to a system of nonlinear elliptic equations, J. Approx. Theory 44 (1985), 241-252. [MR: 794607] [Zbl: 0599.65074] [Google Scholar]
  13. W. R. MANN and F. WOLF, Heat transfer between solids and gases under nonlinear boundary conditions, Quart. Appl. Math. 9 (1951), 163-184. [MR: 42596] [Zbl: 0043.10001] [Google Scholar]
  14. W. E. OLMSTEAD, Temperature distribution in a convex solid with nonlinear radiation boundary condition, J. Math. Mech. 15 (1966), 899-908. [MR: 197047] [Zbl: 0145.36004] [Google Scholar]
  15. J. M. ORTEGA, Numerical Analysis, Academic Press, New-York, 1972. [MR: 403154] [Zbl: 0248.65001] [Google Scholar]
  16. M. H. PROTTER and H. F. WEINBERGER, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1967. [MR: 219861] [Zbl: 0153.13602] [Google Scholar]
  17. R. E. SHOWALTER, Hilbert Space Methods for Partial Differential Equations, Pitman Press, London, 1977. [MR: 477394] [Zbl: 0364.35001] [Google Scholar]
  18. G. STAMPACCHIA, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189-258. [EuDML: 73861] [MR: 192177] [Zbl: 0151.15401] [Google Scholar]
  19. G. STRANG and A. BERGER, The change in solution due to change in domain, Proc. Sympos. Pure Math. on Partial Differential Equations, 23 (1973), 199-205. [MR: 337023] [Zbl: 0259.35020] [Google Scholar]
  20. M. TABATA, Uniform convergence of the upwind finite element approximation for semilinear parabolic problems, J. Math. Kyoto Univ. 18 (1978), 327-351. [MR: 495024] [Zbl: 0391.65038] [Google Scholar]
  21. V. THOMÉE, Polygonal domain approximation in Dirichlet's problem, J. Inst. Math. Appl. 11 (1973), 33-44. [MR: 349044] [Zbl: 0246.35023] [Google Scholar]
  22. R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962. [MR: 158502] [Zbl: 0133.08602] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you