Free Access
Issue |
ESAIM: M2AN
Volume 22, Number 2, 1988
|
|
---|---|---|
Page(s) | 343 - 362 | |
DOI | https://doi.org/10.1051/m2an/1988220203431 | |
Published online | 31 January 2017 |
- M. S. BOU EL SEOUD, Kollokationsmethode für schwach singuläre Inté-gralgleichungen erster Art. Z. Angew. Math. Mech. 59, T45-T47 (1979). [Zbl: 0412.65062] [Google Scholar]
- M. S. AGRANOVICH, Spectral properties of diffraction problems. In : The General Method of Natural Vibrations in Diffraction Theory. (Russian)(N. N. Voitovic, K. Z. Katzenellenbaum and A. N. Sivov) Izdat. Nauka, Mos-cow 1977. [MR: 484012] [Google Scholar]
- M. A. ALEKSIDZE, The Solution of Boundary Value Problems with the Method of Expansion with Respect to Nonorthonormal Functions. Nauka, Moscow 1978 (Russian). [MR: 527813] [Google Scholar]
- D. N. ARNOLD and W. L. WENDLAND, On the asymptotic convergence of collocation methods. Math. Comp. 41, 349-381 (1983). [MR: 717691] [Zbl: 0541.65075] [Google Scholar]
- D. N. ARNOLD and W. L. WENDLAND, The convergence of spline collocationfor strongly elliptic equations on curves. Numer. Math. 47, 317-341 (1985). [EuDML: 133036] [MR: 808553] [Zbl: 0592.65077] [Google Scholar]
- I. BABUSKA and A. K. ziz, Survey lectures on the mathematical foundations of finite element method. In The Mathematical Foundations o f the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), pp. 3-359, Academic Press, New York 1972. [MR: 421106] [Zbl: 0268.65052] [Google Scholar]
- M. COSTABEL and E. STEPHAN, The normal derivative of the double layer potential on polygons and Galerkin approximation. Applicable Anal. 16, 205-288 (1983). [MR: 712733] [Zbl: 0508.31003] [Google Scholar]
- COSTABEL and E. STEPHAN, A direct boundary integral equation method for transmission problems. J. Appl. Anal. Appl. 106, 367-413 (1985). [MR: 782799] [Zbl: 0597.35021] [Google Scholar]
- M. COSTABEL and W. L. WENDLAND, Strong ellipticity of boundary integral operators. J. Reine Angew. Math. 372, 34-63 (1986). [EuDML: 152877] [MR: 863517] [Zbl: 0628.35027] [Google Scholar]
- P. FILIPPI, Layer potentials and acoustic diffraction. J. Sound and Vibration 54, 473-500 (1977). [Zbl: 0368.76073] [Google Scholar]
- J. FREHSE and R. RANNACHER, Eine L'-Fehlerabschätzung für diskrete Grundlösungen in der Mehtode der finiten Elemente. In : Finite Elemente, Tagungsband Bonn. Math. Schr. 89, 92-114 (1976). [MR: 471370] [Zbl: 0359.65093] [Google Scholar]
- J. GIROIRE and J. C. NEDELEC, Numerical solution of an exterior Neumann problem using a double layer potential. Math. Comp. 32, 973-990 (1978). [MR: 495015] [Zbl: 0405.65060] [Google Scholar]
- T. HA DUONG, A finite element method for the double layer potential solutions of the Neumann exterior problem. Math. Meth. Appl. Sci. 2, 191-208 (1980). [MR: 570403] [Zbl: 0437.65083] [Google Scholar]
- F. K. HEBEKER, An integral equation of the first kind for a free boundary value problem of the stationary Stokes equations. Math. Meth. Appl. Sci. 9, 550-575 (1987). [MR: 1200365] [Zbl: 0656.76031] [Google Scholar]
- L. HORMANDER, Pseudo-differential operators and non-elliptic boundary problems. Annals Math. 83, 129-209 (1966). [MR: 233064] [Zbl: 0132.07402] [Google Scholar]
- H. P. HOIDIN, Die Kollokationsmethode angewandt auf die Symmsche Integralgleichung. Doctoral Thesis, EHT Zürich, Switzerland 1983. [Zbl: 0579.65142] [Google Scholar]
- G. C. HSIA and W. L. WENDLAND, A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58, 449-481 (1977). [MR: 461963] [Zbl: 0352.45016] [Google Scholar]
- G. C. HSIAO and W. L. WENDLAND, The Aubin-Nitsche lemma for integral equations. Journal of Integral Equations 3, 299-315 (1981). [MR: 634453] [Zbl: 0478.45004] [Google Scholar]
- F. NATTERER, Über die punktweise Konvergenz finiter Elemente. Number. Math. 25, 67-77 (1975). [EuDML: 132361] [MR: 474884] [Zbl: 0331.65073] [Google Scholar]
- J. C. NEDELEC, Approximation des équations intégrales en mécanique et en physique. Lecture Notes, Centre de Math. Appl. Ecole Polytechnique, 91128 Palaiseau, France, 1977. [Google Scholar]
- J. C. NEDELEC, Approximation par potentiel de double couche du problème de Neumann extérieur. C. R. Acad. Sci. Paris, Ser. A 286, 616-619 (1978). [MR: 477403] [Zbl: 0375.65047] [Google Scholar]
- J. C. NEDELEC, Integral equations with non integrable kernels. Integral Equations Operator Theory 5, 562-572 (1982). [MR: 665149] [Zbl: 0479.65060] [Google Scholar]
- J. A. NITSCHE, $L_\infty $-convergence of finite element approximation. Second Conference on Finite Elements, Rennes, France, 1975. [MR: 568857] [Zbl: 0362.65088] [Google Scholar]
- P. M. PRENTER, Splines and Variational Methods. John Wiley & Sons, New York 1975. [MR: 483270] [Zbl: 0344.65044] [Google Scholar]
- S. PRÖSSDORF and G. SCHMIDT, A finite elementcollocation method for singular integral equations. Math. Nachr, 100, 33-60 (1981). [MR: 632620] [Zbl: 0543.65089] [Google Scholar]
- R. RANNACHER, Punktweise Konvergenz der Methode der finiten Elemente beim Plattenproblem. Manuscripta Math. 19, 401-416 (1976). [EuDML: 154424] [MR: 423841] [Zbl: 0383.65061] [Google Scholar]
- R. RANNACHER, On non conforming and mixed finite element methods for plate bending problems. The linear case. R.A.I.R.O. Anal. Numér. 13, 369-387 (1979). [EuDML: 193348] [MR: 555385] [Zbl: 0425.35042] [Google Scholar]
- R. RANNACHER and R. SCOTT, Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38, 437-445 (1982). [MR: 645661] [Zbl: 0483.65007] [Google Scholar]
- R. RANNACHER and W. L. WENDLAND, On the order of pointwise convergence of some boundary element methods. Part I. Operators of negative and zero order. Math. Modelling and Numer. Analysis 19, 65-88 (1985). [EuDML: 193442] [MR: 813689] [Zbl: 0579.65147] [Google Scholar]
- A. H. SCHATZ and L. B. WAHLBIN, Maximum norm error estimates in the finite element method for Poisson's equation on plante domains with corner. Math. Comp. 32, 73-109 (1978). [MR: 502065] [Zbl: 0382.65058] [Google Scholar]
- G. SCHMIDT, The convergence of Galerkin and collocation methods with splines for pseudodifferential equations on closed curves. Z. Anal. Anwendungen 3, 371-384 (1984). [MR: 780180] [Zbl: 0551.65077] [Google Scholar]
- R. SCOTT, Optimal $L^\infty $-estimatees for the finite element method on irregular meshes. Math. Comp. 30, 681-697 (1976). [MR: 436617] [Zbl: 0349.65060] [Google Scholar]
- E. STEPHAN and W. L. WENDLAND, Remarks to Galerkin and least squares methods with finite elements for general elliptic problems. Manuscripta Geodaetica 1, 93-123 (1976) and Springer Lecture Notes in Math. 564, 461-471 (1976). [MR: 520343] [Zbl: 0353.65067] [Google Scholar]
- G. STRANG, Approximation in the finite element method. Num. Math. 19 (1972). [EuDML: 132133] [MR: 305547] [Zbl: 0221.65174] [Google Scholar]
- M. E. TAYLOR, Pseudodifferential Operators. Princeton University Press,Princeton, New Jersey 1981. [MR: 618463] [Zbl: 0453.47026] [Google Scholar]
- F. TREVES, Pseudodifferential Operators. Plenum Press, New York, London 1980. [MR: 597144] [Google Scholar]
- J. O. WATSON, Advanced implementation of the boundary element method fortwo- and three-dimensional elastostatics. In : Developments in Boundary Element Methods. I. Banerjee and R. Butterfield (eds.), Appl. Sciences Publ. LTD, London, 31-63 (1979). [Zbl: 0451.73075] [Google Scholar]
- W. L. WENDLAND, Boundary element methods and their asymptotic conver-gence. . In : Theoretical Acoustics and Numerical techniques. P. Filippi (éd.), CISM Courses and Lectures No.277, Springer-Verlag, Wien, New York, 135-216 (1983). [MR: 762829] [Zbl: 0618.65109] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.