Free Access
Issue
ESAIM: M2AN
Volume 22, Number 3, 1988
Page(s) 499 - 529
DOI https://doi.org/10.1051/m2an/1988220304991
Published online 31 January 2017
  1. C. BARDOS, Historique sommaire de l'équation de Korteweg-de Vries. Un exemple de l'interaction entre les mathématiques pures et appliques ; Publ. n°45 (1983), Université deParis Nord. [MR: 828857]
  2. C. BARDOS, Ondes solitaires et solitons ; Boll. U.M.I. 5, 16-A(1979), pp. 21-47. [MR: 530128] [Zbl: 0402.35078]
  3. J. L. BONA, V. A. DOUGALIS & O. A. KARAKASHIAN, Fully discrete Galerkin methods for the Korteweg-de Vries équation, to appear in Comput. and Math. with applications 12 A. [MR: 855787] [Zbl: 0597.65072]
  4. J. L. BONA, W. G. PRITCHARD & L. R. SCOTT, Numerical schemes for a model nonlinear, dispersive wave ; to appear in J. Comput. Phys. [MR: 805869] [Zbl: 0578.65120]
  5. J. L. BONA & R. SMITH, The nitial value problem for the Korteweg-de Vries equations ; Phil. Roy. Soc. London, 278 (1975), pp. 555-604. [MR: 385355] [Zbl: 0306.35027]
  6. C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI & T. A. ZANG, Spectral Methods in Fluid Dynamics ; Springer-Verlag, Berlin, 1988. [MR: 917480] [Zbl: 0658.76001]
  7. T. F. CHAN & T. KERKHOVEN, Fourier methods with extended stability intervals for the Korteweg-de Vries equation; S.I.A.M. J. Numer. Anal. 22 (1985), pp. 441-454. [MR: 787569] [Zbl: 0571.65082]
  8. B. FORNBERG, Numerical computation of nonlinear waves ; Technical Report Plenum, Nonlinear Phenomena in Physics and Biology (1981). [MR: 749954] [Zbl: 0525.65074]
  9. B. FORNBERG & F. R. S. WHITHAM, A numerical and theoretical study of certain nonlinear phenomena ; Phil. Trans. Roy. Soc. 289 (1978), pp. 373-404. [MR: 497916] [Zbl: 0384.65049]
  10. D. JACKSON, The Theory of Approximation, A.M. S. Colloquium publications, vol. XI (1930), New York. [Zbl: 56.0936.01] [JFM: 56.0936.01]
  11. D. J. KORTEWEG & G. DE VRIES, On the change of form of long waves advancing in rectangular canal, and on a new type of long stationary waves ; Philos. Mag. (1895), pp. 422-443. [Zbl: 26.0881.02] [JFM: 26.0881.02]
  12. J. L. LIONS & E. MAGENES, Honhomogeneous Boundary Value Problems and Applications, Vol. I, Springer Verlag (1972), Berlin, Heildelberg and New-York. [Zbl: 0223.35039]
  13. M. HE PING & G. BEN YU, The Fourier pseudospectral method with a restrain operator for the Korteweg-deVries equation, J. Comp. Phys. 65 (1986), pp. 120-137. [MR: 848450] [Zbl: 0589.65077]
  14. R. M. MURA, Korteweg-de Vries equation and generalization. I. A remarkable explicit nonlinear transformation ; J. Math. Phys. 9 (1968), pp. 1202-1204. [MR: 252825] [Zbl: 0283.35018]
  15. R. M. MUIRA, The Korteweg-de Vries equation : A survey of results ; S.I.A.M. Review 18 (1976), pp. 412-459. [Zbl: 0333.35021]
  16. R. M. MIURA, C. S. GARDNER & M. D. KRUSKAL ; Korteweg-de Vries equation and generalization. II. Existence of conservation laws and constants of motion ; J. Math. Phys. 9 (1968), pp. 1204-1209. [MR: 252826] [Zbl: 0283.35019]
  17. J. E. PASCIAK, Spectral and pseudo-spectral methods for advection equation ; Math. comput. 35 (1980), pp. 1081-1092. [MR: 583488] [Zbl: 0448.65071]
  18. J. E. PASCIAK, Spectral method for a nonlinear initial value problem involving pseudo-differential operators ; S.I.A.M. J. Numer. Maths., 19, 1982, pp. 142-154. [MR: 646600] [Zbl: 0489.65061]
  19. A. QUARTERONI, Fourier spectral methods for pseudo-parabolic equations ; S.I.A.M. J. Numer. Anal. 24 (1987), pp. 323-335. [MR: 881367] [Zbl: 0621.65120]
  20. H. SCHAMEL & K. ELSÄSSER, The application of spectral method to nonlinear wave propagation, J. Comp. Phys. 22 (1976), pp. 501-516. [MR: 449164] [Zbl: 0344.65055]
  21. F. TAPPERT, Numerical solution of the Korteweg-de Vries equation and its generalizations by the split-step Fourier method, in Lecture in Nonlinear wave Motion, A.C. Newell, ed., Applied Mathematics, vol. 15,A.M.S., Providence, Rhode Island (1974), pp. 215-217. [Zbl: 0292.35046]
  22. R. TÉMAM, Sur un problème non linéaire; J. Math. Pures Appl. 48 (1969), pp. 159-172. [MR: 261183] [Zbl: 0187.03902]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you