Free Access
Issue
ESAIM: M2AN
Volume 22, Number 4, 1988
Page(s) 677 - 693
DOI https://doi.org/10.1051/m2an/1988220406771
Published online 31 January 2017
  1. K. ARROW, L. HURWICZ & H. UZAWA, Studies in non-linear programming; Stanford univ. Press, Stanford (1958). [MR: 108399] [Zbl: 0091.16002] [Google Scholar]
  2. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers; Raior. Anal. Numer. 8-R2 129-151 (1974). [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  3. C. BERNARDI, C. CANUTO & Y. MADAY, Generalized inf-sup condition for Chebychev approximation of the Navier-Stokes equations; IAN Report, N. 533, Pavia, Italy (1986). [Google Scholar]
  4. C. BERNARDI, Y. MADAY & B. MÉTIVET, Spectral approximation of the periodic non-periodic Navier-Stokes equations; to appear in Numer. Math. [EuDML: 133219] [MR: 914344] [Zbl: 0583.65085] [Google Scholar]
  5. C. BERNARDI, Y. MADAY & B. MÉTIVET, Calcul de la pression dans la résolution spectrale des problèmes de Sotkes; La Recherche Aérospatiale, No. 1, 1-21 (1987). [MR: 904608] [Zbl: 0642.76037] [Google Scholar]
  6. C. CANUTO & A. QUARTERONI, Spectral & pseudo-spectral methods for parabolic problems with non-periodic boudary conditions; Calcolo, vol. XVIII, fasi. III (1981). [MR: 647825] [Zbl: 0485.65078] [Google Scholar]
  7. C. CANUTO & A. QUARTERONI, Approximation results for orthogonal polynomials in Sobolev spaces; Math. Comp. vol. 38, No. 157, 67-86 (1982). [MR: 637287] [Zbl: 0567.41008] [Google Scholar]
  8. U. EHRENSTEIN, Méthodes spectrales de résolution des équations de Stokes et de Navier-Stokes. Application à des écoulements de convection double diffusive; Thèse, univ. de Nice (1986). [Google Scholar]
  9. V. GIRAULT & P. A. RAVIART, Finite element approximation of the Navier-Stokes equations; Springer-Verlag (1986). [MR: 548867] [Zbl: 0413.65081] [Google Scholar]
  10. P. HALDENWANG, G. LABROSSE, S. ABBOUDI & M. DEVILLE, Chebychev 3-D and 2-D pseudo-spectral solver for the Helmholtz equations; J. Comp. Phy. vol. 55, 115-128 (1984). [MR: 757426] [Zbl: 0544.65071] [Google Scholar]
  11. D. B. HAIDVOGEL & T. ZANG, The accurate solution of Poisson equation in Chebychev polynomials; J. Comp. Phy. vol. 30, 167-180 (1979). [MR: 528198] [Zbl: 0397.65077] [Google Scholar]
  12. L. KLEISER & SCHUMANN, Treatment of incomppressibility and boundary conditions in 3-D numerical spectral simulation of plane channel flow; Proc. of the 3th GAMM conference on numer. methods in fluid mechanics, Viewig-Verlag Braunschweig, 165-173 (1980). [Zbl: 0463.76020] [Google Scholar]
  13. G. SACCHI LANDERIANI, Spectral Tau approximation of the two dimensional Stokes problem; IAN Report, No. 528, Pavia, Italy (1986). [Zbl: 0629.76037] [Google Scholar]
  14. R. TEMAM, Navier-Stokes equations. Theory and numerical analysis; North-Holland (1979). [Zbl: 0426.35003] [Google Scholar]
  15. L. B. ZHANG, Thèse, univ. de Paris-sud (1987). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you