Free Access
Issue |
ESAIM: M2AN
Volume 23, Number 1, 1989
|
|
---|---|---|
Page(s) | 5 - 51 | |
DOI | https://doi.org/10.1051/m2an/1989230100051 | |
Published online | 31 January 2017 |
- T. ARBOGAST, Analysis of the simulation of single phase flow through a naturally fractured reservoir, SIAM J. Numer. Anal. 26 (1989) (to appear). [MR: 977946] [Zbl: 0668.76130] [Google Scholar]
- T. ARBOGAST, The double porosity model for single phase flow in naturally fractured reservoirs, in Numerical Simulation in Oil Recovery, M. F. Wheeler, ed., The IMA Volumes in Mathematics and its Applications 11, Springer-Verlag, Berlin and New York, 1988, pp. 23-45. [MR: 922955] [Zbl: 0701.76094] [Google Scholar]
- T. ARBOGAST, Simulation of incompressible, miscible displacement in a naturally fractured petroleum reservoir, Ph. D. Thesis, The University of Chicago, Chicago, Illinois, 1987. [Google Scholar]
- T. ARBOGAST, J. Jr. DOUGLAS and J. E. SANTOS, Two-phase immiscible flow in naturally fractured reservoirs, in Numerical Simulation in Oil Recovery, M. F. Wheeler, ed., the IMA Volumes in Mathematics and its Applications 11, Springer-Verlag, Berlin and New York, 1988, pp. 47-66. [MR: 922956] [Zbl: 0699.76103] [Google Scholar]
- G. I. BARENBLATT, Iu. P. ZHELTOV and I. N. KOCHINA, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], Prikl. Mat. Mekh., 24 (1960), pp. 852-864 ; J. Appl. Math. Mech., 24 (1960), pp.1286-1303. [Zbl: 0104.21702] [Google Scholar]
- F. BREZZI, J. Jr. DOUGLAS, R. DURÁN, and M. FORTIN, Mixed finite elements for second order elliptic problems in three variables, Numer. Math., 51 (1987), pp. 237-250. [EuDML: 133194] [MR: 890035] [Zbl: 0631.65107] [Google Scholar]
- F. BREZZI, J. Jr. DOUGLAS, M. FORTIN, and L. D. MARINI, Efficient rectangular mixed finite elements in two and three space variables, R.A.I.R.O. Modél. Math. Anal. Numér., 21 (1987), pp. 581-604. [EuDML: 193515] [MR: 921828] [Zbl: 0689.65065] [Google Scholar]
- J. Jr. DOUGLAS, Numerical methods for the flow of miscible fluids in porous media, in Numerical Methods in Coupled Systems, R. W. Lewis, P. Bettes, and E. Hinton, eds., John Wiley and Sons Ltd, London, 1984, pp. 405-439. [Zbl: 0585.76138] [Google Scholar]
- J. Jr. DOUGLAS, R. E. EWING, and M. F. WHEELER, The approximation of the pressure by a mixed method in the simulation of miscible displacement, R.A.I.R.O. Anal. Numér., 17 (1983), pp. 17-33. [EuDML: 193407] [MR: 695450] [Zbl: 0516.76094] [Google Scholar]
- J. Jr. DOUGLAS, R. E. EWING, and M. F. WHEELER, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, R.A.I.R.O. Anal. Numér., 17 (1983), pp. 249-265. [EuDML: 193417] [MR: 702137] [Zbl: 0526.76094] [Google Scholar]
- J. Jr. DOUGLAS, P. J. PAES LEME, T. ARBOGAST, and T. SCHMITT, Simulation of flow in naturally fractured reservoirs, Paper SPE 16019, in Proceedings, Ninth SPE Symposium on Reservoir Simulation, Society of Petroleum Engineers, Dallas, Texas, 1987, pp. 271-279. [Google Scholar]
- J. Jr. DOUGLAS, and J. E. ROBERTS, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44 (1985), pp. 39-52. [MR: 771029] [Zbl: 0624.65109] [Google Scholar]
- J. Jr. DOUGLAS, and T. F. RUSSELL, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19 (1982), pp. 871-885. [MR: 672564] [Zbl: 0492.65051] [Google Scholar]
- J. Jr. DOUGLAS, M. F. WHEELER, B. L. DARLOW, and R. P. KENDALL, Self-adaptive finite element simulation of miscible displacement in porous media, Comp. Meth. Appl. Mech. Eng., 47 (1984), pp. 131-159. [Zbl: 0545.76128] [Google Scholar]
- J. Jr. DOUGLAS, and Y. YUAN, Numerical simulation of immiscible flow in porous media based on combining the method of characteristics with mixed finite element procedures, in Numerical Simulation in Oil Recovery, M. F. Wheeler, ed., The IMA Volumes in Mathematics and its Applications 11, Springer-Verlag, Berlin and New York, 1988, pp. 119-131. [MR: 922962] [Zbl: 0699.76105] [Google Scholar]
- R. DURÁN, On the approximation of miscible displacement in porous media by a method of characteristics combined with a mixed method, SIAM J. Numer. Anal., 25 (1988), pp. 989-1001. [MR: 960861] [Zbl: 0661.76096] [Google Scholar]
- R. E. EWING, T. F. RUSSELL, and M. F. WHEELER, Simulation of miscible displacement using mixed methods and a modified method of characteristics, Paper SPE 12241, in Proceedings, Seventh SPE Symposium on Reservoir Simulation, Society of Petroleum Engineers, Dallas, Texas, 1983, pp. 71-81. [Google Scholar]
- R. E. EWING, T. F. RUSSELL, and M. F. WHEELER, Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comp. Meth. Appl. Mech. Eng., 47 (1984), pp. 73-92. [MR: 777394] [Zbl: 0545.76131] [Google Scholar]
- R. E. EWING and M. F. WHEELER, Galerkin methods for miscible displacement problems in porous media, SIAM J. Numer. Anal., 17 (1980), pp. 351-365. [MR: 581482] [Zbl: 0458.76092] [Google Scholar]
- R. E. EWING and M. F. WHEELER, Galerkin methods for miscible displacement problems with point sources and sinks-unit mobility ratio case, in Mathematical Methods in Energy Research, K. I. Gross, ed., Society for Industrial and Applied Mathematics, Philadelphia, 1984, pp. 40-58. [MR: 790511] [Zbl: 0551.76079] [Google Scholar]
- H. KAZEMI, Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution, Soc. Pet. Eng. J. (1969), pp. 451-462. [Google Scholar]
- J. C. NEDELEC, Mixed finite elements in R3, Numer. Math., 35 (1980), pp. 315-341. [EuDML: 186293] [MR: 592160] [Zbl: 0419.65069] [Google Scholar]
- D. W. PEACEMAN, Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement, Soc. Pet. Eng. J. (1966), pp. 213-216. [Google Scholar]
- P. A. RAVIART and J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems, in Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics 606, Springer-Verlag, Berlin and New York, 1977, pp. 292-315. [MR: 483555] [Zbl: 0362.65089] [Google Scholar]
- T. F. RUSSELL, Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media, SIAM J. Numer. Anal., 22 (1985), pp. 970-1013. [MR: 799124] [Zbl: 0594.76087] [Google Scholar]
- P. H. SAMMON, Numerical approximations for a miscible displacement process in porous media, SIAM J. Numer. Anal., 23 (1986), pp. 508-542. [MR: 842642] [Zbl: 0608.76084] [Google Scholar]
- F. SONIER, P. SOUILLARD, and F. T. BLASKOVICH, Numerical simulation of naturally fractured reservoirs, Paper SPE 15627, in Proceedings, 61st Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Society of Petroleum Engineers, Dallas, Texas, 1986. [Google Scholar]
- A. DE SWAAN O., Analytic solutions for determining naturally fractured reservoirs properties by well testing, Soc. Pet. Eng. J. (1976), pp. 117-122. [Google Scholar]
- J. E. WARREN and P. J. ROOT, The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J. (1963), pp. 245-255. [Google Scholar]
- M. F. WHEELER, A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10 (1973), pp. 723-759. [MR: 351124] [Zbl: 0232.35060] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.