Free Access
Issue
ESAIM: M2AN
Volume 23, Number 2, 1989
Page(s) 191 - 204
DOI https://doi.org/10.1051/m2an/1989230201911
Published online 31 January 2017
  1. CHRISTIE and G. H. GANSER, A numerical study of nonlinear waves arising in a one-dimensional model of a fluidized bed, J. Comput. Phys. (to appear). [MR: 994350] [Zbl: 0662.76030]
  2. J. DE FRUTOS and J. M. SANZ-SERNA, h-dependent thresholds avoid the need for a priori bounds in nonlinear convergence proofs, Proceedings of the Third International Conference on Numerical Analysis and its Applications, January 1988, Benin, City, Nigeria. Edited by Simeon Ola Fatunla (to appear).
  3. G. H GANSER and D. A. DREW, Nonlinear analysis of a uniform fluidized bed, submitted. [Zbl: 1134.76544]
  4. G. H GANSER and D. A. DREW, Nonlinear periodic waves in a two-phase flow model, SIAM J. Appl. Math 47 (1987), pp. 726-736. [MR: 898830] [Zbl: 0634.76100]
  5. R. D. GRIGORIEFF, Numerik gewohnlicher Differentialgleichungen, Teubner, Stuttgart, 1972. [MR: 468207] [Zbl: 0249.65051]
  6. C. PALENCIA and J. M. SANZ-SERNA, Equivalence theorems for incomplete spaces : an appraisal, IMA J. Numer. Anal. 4 (1984), pp. 109-115. [MR: 740788] [Zbl: 0559.65033]
  7. J. M. SANZ-SERNA and C. PALENCIA, A general equivalence theorem in the theory of discretization methods, Math. Comput. 45 (1985), pp. 143-152. [MR: 790648] [Zbl: 0599.65034]
  8. J. M. SANZ-SERNA and J. G. VERWER, Stability and convergence in the PDE/stiff ODE interface, Appl. Numer. Math. (to appear). [MR: 979551] [Zbl: 0671.65078]
  9. V. THOMEE, Stability theory for partial difference operators. SIAM Rev. 11 (1969), pp. 152-195. [MR: 250505] [Zbl: 0176.09101]
  10. F. VADILLO and J. M. SANZ-SERNA, Studies in numerical nonlinear instability in a new look at u1 + uur = 0, J. Comput. Phys. 66 (1986), pp. 225-238. [MR: 865708] [Zbl: 0612.65053]
  11. G. VERWER and J. M. SANZ-SERNA, Convergence of method of lines approximations to partial differential equations, Computing 33 (1984), pp. 297-313. [MR: 773930] [Zbl: 0546.65064]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you