Free Access
Issue
ESAIM: M2AN
Volume 23, Number 2, 1989
Page(s) 293 - 333
DOI https://doi.org/10.1051/m2an/1989230202931
Published online 31 January 2017
  1. D. BEGIS, Analyse numérique de l'écoulement d'un fluide de Bingham, Thèse Université de Paris, 1972.
  2. L. CATTABRIGA, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend Mat Sem. Univ. Padova, 31, 1961, p. 300-340. [EuDML: 107065] [MR: 138894] [Zbl: 0116.18002]
  3. P. G. CIARLET, The Finite Element Method for Elhptic Problems, North-Holland, Amsterdam-New York-Oxford, 1978. [MR: 520174] [Zbl: 0383.65058]
  4. G. DUVAUT, and J. L. LIONS, Écoulement d'un fluide rigide viscoplastiqueincompressible, C. R. Acad Sc. Paris, T 270, 1970, pp. 58-61. [MR: 261154] [Zbl: 0194.57604]
  5. G. DUVAUT and J. L. LIONS, Inequalities in Mechanics and Physics, Springer-Verlag, Berlm-Heidelberg-New York, 1976. [MR: 521262] [Zbl: 0331.35002]
  6. M. FORTIN, Calcul numérique des écoulements des fluides de Bingham et desfluides newtomens incompressibles par la méthode des éléments finis, Thèse, Université de Paris, 1972.
  7. D. GILBARG, and N. S. TRUDINGER, Elliptic Partial Differential Equations ofsecond order, Springer-Verlag, Berlin-Heidelberg-New York, 1977. [MR: 473443] [Zbl: 0361.35003]
  8. V. GiRAULT and P. A. RAVIART, Finite element Approximation of the Navier-Stokes Equations, Lecture Notes in Math. Vol. 749, Springer-Verlag, 1979. [MR: 548867] [Zbl: 0413.65081]
  9. R. GLOWINSKI, Sur l'écoulement d'un fluide de Bmgham dans une conduite cylindrique, J. Mech. 13 (4), 1974, p 601-621. [MR: 371245] [Zbl: 0324.76004]
  10. R. GLOWINSKI, Numencal Methods for Nonhnear vanational Problems, Springer-Verlag, New York-Berlin-Heidelberg, 1984.
  11. R. GLOWINSKI, J. L. LIONS, and R. TREMOLIERES, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam-New York-Oxford, 1981. [MR: 635927] [Zbl: 0463.65046]
  12. J. G. HEYWOOD, and R. RANNACHER, Finite Element Approximation of the Nonstationary Navier-Stokes problem, Part II, SIAM J. Num. Anal., 23, No 4, 1986, p 750-777. [MR: 849281] [Zbl: 0611.76036]
  13. J. KIM, On the initial-boundary value problem for a Bingham fluid in a threedimensional domain, Trans. Amer. Math. Soc., Vol. 304, No 2, 1987, p. 751-770. [MR: 911094] [Zbl: 0635.35054]
  14. J. KIM, Semi-discretization Method for three dimensional motion of a Bingham fluid, preprint. [Zbl: 0706.35113]
  15. J. L. LIONS, Quelques Methodes de Resolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. [MR: 259693] [Zbl: 0189.40603]
  16. R. TEMAM, Une Methode d'Approximation de la Solution des Equations deNavier-Stokes, Bull. Soc. Math. France, Vol. 96, 1968, p. 115-152. [EuDML: 87104] [MR: 237972] [Zbl: 0181.18903]
  17. R. TEMAN, Navier-Stokes Equations, North-Holland, Amsterdam-New York-Oxford, 1984. [MR: 769654] [Zbl: 0568.35002]
  18. R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, 1983. [MR: 764933] [Zbl: 0833.35110]
  19. H. TRIEBEL, Interpolation Theory,Function spaces, Differential Operators, North-Holland, Amsterdam-New-Oxford, 1978. [MR: 503903] [Zbl: 0387.46032]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you