Free Access
Issue
ESAIM: M2AN
Volume 23, Number 2, 1989
Page(s) 293 - 333
DOI https://doi.org/10.1051/m2an/1989230202931
Published online 31 January 2017
  1. D. BEGIS, Analyse numérique de l'écoulement d'un fluide de Bingham, Thèse Université de Paris, 1972. [Google Scholar]
  2. L. CATTABRIGA, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend Mat Sem. Univ. Padova, 31, 1961, p. 300-340. [EuDML: 107065] [MR: 138894] [Zbl: 0116.18002] [Google Scholar]
  3. P. G. CIARLET, The Finite Element Method for Elhptic Problems, North-Holland, Amsterdam-New York-Oxford, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  4. G. DUVAUT, and J. L. LIONS, Écoulement d'un fluide rigide viscoplastiqueincompressible, C. R. Acad Sc. Paris, T 270, 1970, pp. 58-61. [MR: 261154] [Zbl: 0194.57604] [Google Scholar]
  5. G. DUVAUT and J. L. LIONS, Inequalities in Mechanics and Physics, Springer-Verlag, Berlm-Heidelberg-New York, 1976. [MR: 521262] [Zbl: 0331.35002] [Google Scholar]
  6. M. FORTIN, Calcul numérique des écoulements des fluides de Bingham et desfluides newtomens incompressibles par la méthode des éléments finis, Thèse, Université de Paris, 1972. [Google Scholar]
  7. D. GILBARG, and N. S. TRUDINGER, Elliptic Partial Differential Equations ofsecond order, Springer-Verlag, Berlin-Heidelberg-New York, 1977. [MR: 473443] [Zbl: 0361.35003] [Google Scholar]
  8. V. GiRAULT and P. A. RAVIART, Finite element Approximation of the Navier-Stokes Equations, Lecture Notes in Math. Vol. 749, Springer-Verlag, 1979. [MR: 548867] [Zbl: 0413.65081] [Google Scholar]
  9. R. GLOWINSKI, Sur l'écoulement d'un fluide de Bmgham dans une conduite cylindrique, J. Mech. 13 (4), 1974, p 601-621. [MR: 371245] [Zbl: 0324.76004] [Google Scholar]
  10. R. GLOWINSKI, Numencal Methods for Nonhnear vanational Problems, Springer-Verlag, New York-Berlin-Heidelberg, 1984. [Google Scholar]
  11. R. GLOWINSKI, J. L. LIONS, and R. TREMOLIERES, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam-New York-Oxford, 1981. [MR: 635927] [Zbl: 0463.65046] [Google Scholar]
  12. J. G. HEYWOOD, and R. RANNACHER, Finite Element Approximation of the Nonstationary Navier-Stokes problem, Part II, SIAM J. Num. Anal., 23, No 4, 1986, p 750-777. [MR: 849281] [Zbl: 0611.76036] [Google Scholar]
  13. J. KIM, On the initial-boundary value problem for a Bingham fluid in a threedimensional domain, Trans. Amer. Math. Soc., Vol. 304, No 2, 1987, p. 751-770. [MR: 911094] [Zbl: 0635.35054] [Google Scholar]
  14. J. KIM, Semi-discretization Method for three dimensional motion of a Bingham fluid, preprint. [Zbl: 0706.35113] [Google Scholar]
  15. J. L. LIONS, Quelques Methodes de Resolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. [MR: 259693] [Zbl: 0189.40603] [Google Scholar]
  16. R. TEMAM, Une Methode d'Approximation de la Solution des Equations deNavier-Stokes, Bull. Soc. Math. France, Vol. 96, 1968, p. 115-152. [EuDML: 87104] [MR: 237972] [Zbl: 0181.18903] [Google Scholar]
  17. R. TEMAN, Navier-Stokes Equations, North-Holland, Amsterdam-New York-Oxford, 1984. [MR: 769654] [Zbl: 0568.35002] [Google Scholar]
  18. R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, 1983. [MR: 764933] [Zbl: 0833.35110] [Google Scholar]
  19. H. TRIEBEL, Interpolation Theory,Function spaces, Differential Operators, North-Holland, Amsterdam-New-Oxford, 1978. [MR: 503903] [Zbl: 0387.46032] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you