Free Access
Issue
ESAIM: M2AN
Volume 23, Number 3, 1989
Attractors, Inertial Manifolds and their Approximation. Proceedings of the Marseille-Luminy... 1987
Page(s) 359 - 370
DOI https://doi.org/10.1051/m2an/1989230303591
Published online 31 January 2017
  1. [A] F. ABERGEL, Existence and Finite Dimensionality of the Global attractor for Some Evolution Equations on Unbounded Domains, to appear in J. Diff. Equations. [Zbl: 0706.35058] [Google Scholar]
  2. [C-F] P. CONSTANTIN, C. FOIAS, Global Lyapunov Exponents, Kaplan-Yorke Formulas and the Dimension of the Attractors for 2D Navier-Stokes Equations Comm. Pure Appl. Math. 38 (1985), pp 1-27. [MR: 768102] [Zbl: 0582.35092] [Google Scholar]
  3. [C-F-T (1)] P. CONSTANTIN, C. FOIAS, R. TEMAM, Attractors Representing Turbulent Flows, Memoirs of A. M. S., vol. 53, 314 (1985). [MR: 776345] [Zbl: 0567.35070] [Google Scholar]
  4. [F-T] C. FOIAS, R. TEMAM, Some Analytic and Geometric Properties of the Solutions of the Evolution Navier-Stokes Equations, J. Math., Pures et Appl., 58 (1979), pp 334-268. [MR: 544257] [Zbl: 0454.35073] [Google Scholar]
  5. [G-M-T] J. M. GHIDAGLIA, M. MARION, R. TEMAM, Generalization of the Sobolev-Lieb-Thirring Inequalities and Application to the Dimension of the Attractor, Differential and Integral Equations, 1 (1988), pp 1-21. [MR: 920485] [Zbl: 0745.46037] [Google Scholar]
  6. [H] J. K. HALE, Asymptotic Behavior of Dissipative Systems, A. M. S0 Mathematical Surveys and Monographs, vol. 25 (1988). [MR: 941371] [Zbl: 0642.58013] [Google Scholar]
  7. [H-L-P] G. H. HARDY, J. E. LITTLEWOOD, G. PÓLYA, Inequalities, Cambridge University Press, London (1934). [Zbl: 0010.10703] [JFM: 60.0169.01] [Google Scholar]
  8. [L-T] E. LIEB, W. THIRRING, Inequalities for the Moments of the Schroedinger Equations and Their Relation to Sobolev Inequalities, Studies in Mathematical Physics Essays in Honor of Valentine Bergman, E. Lieb, B. Simon, A. S. Wightman, Editors, Princeton Umversity Press, Princeton, New Jersey (1976), pp 269-303. [Zbl: 0342.35044] [Google Scholar]
  9. [Tl] R. TEMAM, Navier-Stokes Equations, 3rd edition, North Holland, Amsterdam (1984). [MR: 769654] [Google Scholar]
  10. [T2] R. TEMAM, Infinite Dimensional Systems in Mechanics and Physics, Springer Verlag, Berlin, Heidelberg, New York (1988). [MR: 953967] [Zbl: 0662.35001] [Google Scholar]
  11. [C-F-T (2)] P. CONSTANTIN, C. FOIAS, R. TEMAM, to appear in Physica D. [Google Scholar]
  12. [F-M-T] C. FOIAS, O. P. MANLEY, R. TEMAM, Attractors for the Bénard Problem Existence and Physical Bounds on their Fractal Dimension, Nonlinear Analysis, Theory, Methods and Applications, 11, n° 8 (1987), pp 939-967. [MR: 903787] [Zbl: 0646.76098] [Google Scholar]
  13. [L-M] J. L. LIONS, E. MAGENES, Problemes aux Limites Non Homogenes et Applications, vol. 1, Dunod Paris (1968). [MR: 247243] [Zbl: 0165.10801] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you